Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4 K GM-type pulse tube cryocooler with large cooling capacity

Liu Xu-Ming Pan Chang-Zhao Zhang Yu Liao Yi Guo Wei-Jie Yu Da-Peng

Citation:

4 K GM-type pulse tube cryocooler with large cooling capacity

Liu Xu-Ming, Pan Chang-Zhao, Zhang Yu, Liao Yi, Guo Wei-Jie, Yu Da-Peng
cstr: 32037.14.aps.72.20230910
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Owing to the advantages of large cooling capacity, low vibration and high reliability, GM-type pulse tube cryocoolers at liquid helium temperature have important applications in frontier fields of condensed matter physics research, quantum computing, etc. The phase shifter has an important influence on the cooling performance of pulse tube cryocooler. Previous researches on the phase shifter of GM-type pulse tube cryocooler mainly focused on the effect of a single phase shifter on the performance of the cryocooler at liquid helium temperature. In this paper, based on Sage software, a simulation model of a 4 K two-stage gas-coupled GM-type pulse tube cryocooler is first designed and constructed. The influence of the phase shifters of the two stages on the first-stage and the second-stage temperatures are calculated. The adjustment and optimization process of the cryocooler to obtain the liquid helium temperature is studied. Numerical simulations are given below. 1) The lowest temperature of the model is only about 100 K when the phase shifters of the two stages are closed. The lowest temperature of the model can be reduced to 2.7 K by optimizing the first-stage orifice valve, the second-stage orifice valve, the first-stage double-inlet valve and the second-stage double-inlet valve in sequence. 2) The first-stage orifice valve, the second-stage orifice valve, and the second-stage double-inlet valve have a significant effect on reducing the cooling temperature of the second stage, while the first-stage double-inlet valve has little effect on reducing the temperature of the second stage. 3) The first-stage orifice valve and the second-stage double-inlet valve have a significant effect on reducing the cooling temperature of the first stage, and the first-stage double-inlet valve has little effect on reducing the temperature of the first stage. The second-stage orifice valve will worsen the first stage performance. Finally, an experimental system is constructed. The lowest temperature of the experimental prototype can reach 3.1 K, and the cooling capacity of 0.8 W can be produced at 4.2 K, which is presently the best result obtained by the domestic two-stage gas-coupled valve-separated GM type pulse tube cryocooler. This research can not only promote the independent construction of domestic 4 K refrigeration platform, but also support the relevant frontier basic scientific research and the development of important scientific instruments and equipment. In the future, the structure of the first-stage cold-end heat exchanger and the impedance matching between the compressor and the cryocooler will be improved, and the gas coupling characteristics inside the cryocooler will be studied theoretically and experimentally in depth.
      Corresponding author: Pan Chang-Zhao, pancz@sustech.edu.cn
    • Funds: Project supported by the Science and Technology Innovation Commission of Shenzhen, China (Grant No. RCBS20221008093120048).
    [1]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [2]

    Yang B, Gao Z Z, Xi X T, Chen L B, Wang J J 2022 J. Low Temp. Phys. 206 321Google Scholar

    [3]

    Radebaugh R 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [4]

    Gifford W, Longsworth R 1964 J. Eng. Ind. 86 264Google Scholar

    [5]

    Radebaugh R 1990 Adv. Cryog. Eng. 35 1191

    [6]

    Matsubara Y, Gao J L 1994 Cryogenics 34 259

    [7]

    Tanida K, Gao J L, Yoshimura N, Matsubara Y 1996 Adv. Cryog. Eng. 41 1503

    [8]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 857Google Scholar

    [9]

    Wang C, Heiden C, Thummes G 1998 Cryogenics 38 689Google Scholar

    [10]

    Chen G B, Qiu L M, Zheng J Y, Yan P D, Gan Z H, Bai X, Huang Z X 1997 Cryogenics 37 271Google Scholar

    [11]

    Chen G B, Zheng J Y, Qiu L M, Bai X, Gan Z H, Yan P D, Yu J P, Jin T, Huang Z X 1997 Cryogenics 37 529Google Scholar

    [12]

    Qiu L M, He Y L, Gan Z H, Chen G B 2006 AIP Conf. 823 845Google Scholar

    [13]

    成渝 2006 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Cheng Y 2006 M. S. Thesis (Harbin: Harbin Institute of Technology

    [14]

    闫磊 2007 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yan L 2007 M. S. Thesis (Harbin: Harbin Institute of Technology

    [15]

    Jiang N, Lindemann U, Giebeler F, Thummes G 2004 Cryogenics 44 809Google Scholar

    [16]

    Wang C 2016 Cryocoolers 19 299

    [17]

    Qiu L M, Zhang K H, Dong W Q, Gan Z H, Wang C, Zhang X J 2012 Int. J. Refrig. 35 2332Google Scholar

    [18]

    Schmidt B, Vorholzer M, Dietrich M, Falter J, Schirmeisen A, Thummes G 2017 Cryogenics 88 129Google Scholar

    [19]

    Schmidt J A, Schmidt B, Dietzel D, Falter J, Thummes G, Schirmeisen A 2022 Cryogenics 122 103417Google Scholar

    [20]

    Japanese 4 K Two-stage GM Type Pulse Tube Cryocoolers https://www.shicryogenics.com/products/cryocoolers/ [2023-6-29

    [21]

    American 4 K Two-Stage GM Type Pluse Tube Cryocoolers https://www.cryomech.com/cryocoolers/pulse-tube-cryocoolers/ [2023-6-29

    [22]

    Wang C 1997 Cryogenics 37 207Google Scholar

    [23]

    Wang C 1997 Cryogenics 37 215Google Scholar

    [24]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 159Google Scholar

    [25]

    Qiu L M, Thummes G 2002 Adv. Cryog. Eng. 47 625Google Scholar

    [26]

    Qiu L M, Thummes G 2002 Cryogenics 42 327Google Scholar

    [27]

    Kim K, Zhi X Q, Qiu L, Nie H L, Wang J J 2017 Int. J. Refrig. 77 1Google Scholar

    [28]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [29]

    Gedeon D 2016 Sage User’s Guide: Stirling, Pulse-Tube and Low-T Cooler Model Classes v11 Edition (Athens: Gedeon Associates) p6

    [30]

    戴巍, 罗二仓 2005 低温工程 144 24Google Scholar

    Dai W, Luo E C 2005 Cryog. Eng. 144 24Google Scholar

    [31]

    Pan C Z, Zhang T, Zhou Y, Wang J J 2016 Cryogenics 77 20Google Scholar

  • 图 1  双向进气型气耦合两级GM脉冲管制冷机结构示意图

    Figure 1.  Schematic of the two-stage gas-coupled double-inlet GM type pulse tube cryocooler.

    图 2  一、二级小孔分别对一级和二级制冷温度的影响

    Figure 2.  Dependence of the cooling temperatures of the two stages on the openings of the first-stage and the second-stage orifice valves.

    图 3  一、二级双向分别对一级和二级制冷温度的影响

    Figure 3.  Dependence of the cooling temperatures of the two stages on the openings of the first-stage and the second-stage double-inlet valves.

    图 4  二级双向DC直流对一级和二级制冷温度的影响

    Figure 4.  Dependence of the cooling temperatures of the two stages on the DC flow rates caused by the second-stage double-inlet valve.

    图 5  实验系统实物照片

    Figure 5.  Photo of the experimental system with the cryocooler prototype.

    图 6  制冷机样机典型降温曲线

    Figure 6.  Time-dependent temperature distributions of the cryocooler prototype.

    图 7  制冷机样机不同温度下的典型制冷量

    Figure 7.  Tested cooling power of the cryocooler prototype at different temperatures.

    图 8  制冷机样机不同位置压力波动 (a)实时数据; (b)傅里叶分析

    Figure 8.  Tested pressure oscillation of the cryocooler prototype at different positions: (a) Real-time data; (b) Fourier analysis.

    图 9  制冷机样机相位调节和直流调节的影响 (a)实物照片; (b)温度波动

    Figure 9.  Effects of phase shifting and DC flow on the cryocooler prototype: (a) Physical photo; (b) temperature fluctuation.

    表 1  4 K GM型脉冲管制冷机主要结构参数

    Table 1.  Main structural parameters of the 4 K GM-type pulse tube cryocooler.

    参数数值
    一级回热器外径/长度/(mm/mm)60/210
    一级脉冲管外径/长度/(mm/mm)44/210
    一级气库容积/L3
    二级回热器外径/长度/(mm/mm)33/210
    二级脉冲管外径/长度/(mm/mm)25/450
    二级气库容积/L3
    DownLoad: CSV

    表 2  与其他同类主流制冷机产品比较

    Table 2.  Comparison with mainstream products of 4 K GM-type pulse tube cryocoolers.

    生产厂商 降温
    时间/h
    最低
    温度/K
    制冷量
    Sumitomo RP-182 B2 S 2 < 2.8 1.5 W@4.2 K
    Cryomech PT415* 2 2.8 1.35 W@4.2 K
    本文 3 3.1 0.8 W@4.2 K
    注: *表示阀分离型
    DownLoad: CSV
    Baidu
  • [1]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [2]

    Yang B, Gao Z Z, Xi X T, Chen L B, Wang J J 2022 J. Low Temp. Phys. 206 321Google Scholar

    [3]

    Radebaugh R 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [4]

    Gifford W, Longsworth R 1964 J. Eng. Ind. 86 264Google Scholar

    [5]

    Radebaugh R 1990 Adv. Cryog. Eng. 35 1191

    [6]

    Matsubara Y, Gao J L 1994 Cryogenics 34 259

    [7]

    Tanida K, Gao J L, Yoshimura N, Matsubara Y 1996 Adv. Cryog. Eng. 41 1503

    [8]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 857Google Scholar

    [9]

    Wang C, Heiden C, Thummes G 1998 Cryogenics 38 689Google Scholar

    [10]

    Chen G B, Qiu L M, Zheng J Y, Yan P D, Gan Z H, Bai X, Huang Z X 1997 Cryogenics 37 271Google Scholar

    [11]

    Chen G B, Zheng J Y, Qiu L M, Bai X, Gan Z H, Yan P D, Yu J P, Jin T, Huang Z X 1997 Cryogenics 37 529Google Scholar

    [12]

    Qiu L M, He Y L, Gan Z H, Chen G B 2006 AIP Conf. 823 845Google Scholar

    [13]

    成渝 2006 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Cheng Y 2006 M. S. Thesis (Harbin: Harbin Institute of Technology

    [14]

    闫磊 2007 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yan L 2007 M. S. Thesis (Harbin: Harbin Institute of Technology

    [15]

    Jiang N, Lindemann U, Giebeler F, Thummes G 2004 Cryogenics 44 809Google Scholar

    [16]

    Wang C 2016 Cryocoolers 19 299

    [17]

    Qiu L M, Zhang K H, Dong W Q, Gan Z H, Wang C, Zhang X J 2012 Int. J. Refrig. 35 2332Google Scholar

    [18]

    Schmidt B, Vorholzer M, Dietrich M, Falter J, Schirmeisen A, Thummes G 2017 Cryogenics 88 129Google Scholar

    [19]

    Schmidt J A, Schmidt B, Dietzel D, Falter J, Thummes G, Schirmeisen A 2022 Cryogenics 122 103417Google Scholar

    [20]

    Japanese 4 K Two-stage GM Type Pulse Tube Cryocoolers https://www.shicryogenics.com/products/cryocoolers/ [2023-6-29

    [21]

    American 4 K Two-Stage GM Type Pluse Tube Cryocoolers https://www.cryomech.com/cryocoolers/pulse-tube-cryocoolers/ [2023-6-29

    [22]

    Wang C 1997 Cryogenics 37 207Google Scholar

    [23]

    Wang C 1997 Cryogenics 37 215Google Scholar

    [24]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 159Google Scholar

    [25]

    Qiu L M, Thummes G 2002 Adv. Cryog. Eng. 47 625Google Scholar

    [26]

    Qiu L M, Thummes G 2002 Cryogenics 42 327Google Scholar

    [27]

    Kim K, Zhi X Q, Qiu L, Nie H L, Wang J J 2017 Int. J. Refrig. 77 1Google Scholar

    [28]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [29]

    Gedeon D 2016 Sage User’s Guide: Stirling, Pulse-Tube and Low-T Cooler Model Classes v11 Edition (Athens: Gedeon Associates) p6

    [30]

    戴巍, 罗二仓 2005 低温工程 144 24Google Scholar

    Dai W, Luo E C 2005 Cryog. Eng. 144 24Google Scholar

    [31]

    Pan C Z, Zhang T, Zhou Y, Wang J J 2016 Cryogenics 77 20Google Scholar

Metrics
  • Abstract views:  10699
  • PDF Downloads:  375
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2023
  • Accepted Date:  28 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 October 2023
  • /

    返回文章
    返回
    Baidu
    map