Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time of flight detector for charged particle identification based on circular electron-positron collider

Mou Jia-Lian Lü Jun-Guang Sun Xi-Lei Lan Xiao-Fei Huang Yong-Sheng

Citation:

Time of flight detector for charged particle identification based on circular electron-positron collider

Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng
cstr: 32037.14.aps.72.20222271
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The circular electron-positron collider (CEPC) requires a 3% precision in the measurement of dE/dx to identify long-lived charged particles. However, the measurement of dE/dx has a blind area for each of charged particles of $\pi / \rm{K}$, $\pi / \rm{P}$, and $\rm{K} / \rm{P}$, having transverse momenta of 1 GeV/c, 1.6 GeV/c, and 2 GeV/c respectively. One potential solution is to use a high-precision time-of-flight (TOF) detector with a time resolution of less than 50 ps to fill in the blind area. To address this, we propose a small particle TOF detector that uses small plastic scintillators ($1 \;\; \mathrm{cm} \times 1 \;\; \mathrm{cm} \times 0.3 \;\; \mathrm{cm}$) silicon photomultipliers for readout. In this work, we introduce the construction of the detector and calibrate its performance by using ${ }^{90} \mathrm{Sr} $ electron collimators and high-speed waveform acquisition electronics. Using a constant fraction timing method, we find that the time resolution of the detector is about 48 ps, satisfying the CEPC’s requirements for TOF detection.
      Corresponding author: Sun Xi-Lei, sunxl@ihep.ac.cn ; Lan Xiao-Fei, lan-x-f@163.com
    • Funds: Projected supported by the National Key R&D Program of China (Grant No. 2022YFB3503600)
    [1]

    CEPC Study Group 2018 arXiv: 1809.00285[hep-ex]

    [2]

    An F, Bai Y, Chen C, Chen X, Chen Z, Da Costa J G, Zhou N 2019 Chin. Phys. C 43 043002Google Scholar

    [3]

    Cai C, Yu Z H, Zhang H H 2017 Nucl. Phys. B 921 181Google Scholar

    [4]

    Zheng T, Xu J, Cao L, Yu D, Wang W, Prell S, Cheung Y E, Ruan M 2021 Chin. Phys. C 45 023001Google Scholar

    [5]

    Chen C, Mo X, Selvaggi M, Li Q, Li G, Ruan M, Lou X 2017 arXiv: 1712.09517[hep-ex]

    [6]

    Chen Z X, Yang Y, Ruan M Q, Wang D Y, Li G, Jin S, Ban Y 2017 Chin. Phys. C 41 023003Google Scholar

    [7]

    Liu Z, Xu Y H, Zhang Y 2019 JHEP 6 1Google Scholar

    [8]

    Cao Q H, Li Y, Yan B, Zhang Y, Zhang Z 2016 Nucl. Phys. B 909 197Google Scholar

    [9]

    Chang W F, Ng J N, White G 2018 Phys. Rev. D 97 115015Google Scholar

    [10]

    Bai Y, Chen C H, Fang Y Q, Li G, Ruan M Q, Shi J Y, Wang B, Kong P Y, Lan B Y, Liu Z F 2020 Chin. Phys. C 44 013001Google Scholar

    [11]

    Chen L J, Zhu H B, Ai X C, Fu M, Kiuchi R, Liu Y, Liu Z A, Lou X C, Lu Y P, Ouyang Q, Zhou Y 2019 RDTM 3 1Google Scholar

    [12]

    Liang H, Zhu Y, Lai P Z, Ruan M 2022 arXiv: 2209.00397[phys.ins-det]

    [13]

    CEPC Study Group 2018 arXiv: 1811.10545[hep-ex]

    [14]

    张辉 2019 博士学位论文 (合肥: 中国科学技术大学)

    Zhang H 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [15]

    An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 arXiv: 1803.05134[phys.ins-det]

    [16]

    An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 Eur. Phys. J. C 78 1Google Scholar

    [17]

    Xin S 2021 Bull. Am. Phys. Soc. 66 5

    [18]

    Chiarello G, Corvaglia A, Grancagnolo F, Miccoli A, Panareo M, Tassielli G F 2019 Nucl. Instrum. Meth. Phys. Res. Sect. A 936 503Google Scholar

    [19]

    Dong M Y 2018 JINST 1 3Google Scholar

    [20]

    Ackermann U, Egger W, Sperr P, Dollinger G 2015 Nucl. Instrum. Meth. Phys. Res. Sect. A 786 5Google Scholar

    [21]

    王凤梅, 衡月昆, 吴冲, 赵小健, 孙志嘉, 吴金杰, 赵力, 赵玉达, 蒋林立 2006 高能物理与核物理 30 776

    Wang F M, Heng Y K, Wu C, Zhao X J, Sun Z J, Wu J J, Zhao L, Zhao Y D, Jiang L L 2006 High Energy Phys. Nucl. Phys. 30 776

    [22]

    Li S L, Heng Y K, Zhao T C, Fu Z W, Liu S L, Qian S, Liu S D, Chen X H, Jia R, Huang G R, Lei X C 2013 Chin. Phys. C 37 016003Google Scholar

    [23]

    Wiener R I, Surti S, Kyba C C M, Newcomer F M, Van Berg R, Karp J S 2008 2008 IEEE Nucl. Sci. Conf. R. Dresden, Germany, October 19–25, 2008 p4101

    [24]

    钱森, 付在伟, 宁哲, 王贻芳, 衡月昆, 祁鸣 2010 第十五届全国核电子学与核探测技术学术年会论文集 中国贵阳, 2010年8月13日, 第225页

    Qian S, Fu Z W, Ling Z, Wang Y F, Heng Y K, Qi M 2010 Proceedings of the 15th National Annual Conference on Nuclear Power Sub-science and Nuclear Detection Technology Guiyang, China, August 13, 2010 p225 (in Chinese)

  • 图 1  依据不同带电粒子$\mathrm{d}{E} / \mathrm{d}{x}$信息算得两带电粒子间的分辨程度S和横动量的关系, 实线代表$\mathrm{d}{E} / \mathrm{d}{x}$测量精度为4.2%, 虚线代表$\mathrm{d}{E} / \mathrm{d}{x}$测量精度为3%, 图中曲线依据碳材料的电离能损计算得到

    Figure 1.  Based on the $\mathrm{d}{E}/ \mathrm{d}{x}$ information of different charged particles, the relationship between the resolution of S and the transverse momentum of charged particles is calculated. The solid and dashed line represent the dE/dx resolution of 4.2% and 3%, respectively. The curve in the figure is calculated based on the ionization energy loss of carbon material

    图 2  TOF探测器分辨能力和带电粒子横动量的关系 (a) $ \pi / \mathrm{K} $分辨; (b) $ \mathrm{K} / \mathrm{P} $分辨

    Figure 2.  Relationship between TOF detector resolution and transverse momentum of charged particles: (a) $ \pi / \mathrm{K} $ resolution; (b) K/P resolution

    图 3  (a)塑料闪烁体; (b) NDL SiPM 3 × 3阵列

    Figure 3.  (a) Plastic scintillator; (b) NDL SiPM 3 × 3 array

    图 4  颗粒状TOF探测器测试系统

    Figure 4.  Test system of granular TOF detector

    图 5  通过宇宙射线符合测量得到的能谱和幅度谱分布  (a) CH1通道的能谱; (b) CH2通道的能谱; (c) CH1通道的幅度分布谱; (d) CH2通道的幅度分布谱

    Figure 5.  Energy spectrum and amplitude spectrum distribution obtained by cosmic rays coincidence measurement: (a) Energy spectrum of CH1 channel; (b) energy spectrum of CH2 channel; (c) amplitude distribution spectrum of CH1 channel; (d) amplitude distribution spectrum of CH2 channel

    图 6  通过$ { }^{90} \mathrm{Sr} $放射源符合测量得到的能谱和幅度谱分布  (a) CH1通道的能谱; (b) CH2通道的能谱; (c) CH1通道的幅度分布谱; (d) CH2通道的幅度分布谱

    Figure 6.  Energy spectrum and amplitude spectrum distribution obtained by $ { }^{90} \mathrm{Sr} $ radiation source coincidence measurement: (a) Energy spectrum of CH1 channel; (b) energy spectrum of CH2 channel; (c) amplitude distribution spectrum of CH1 channel; (d) amplitude distribution spectrum of CH2 channel.

    图 7  通过$ { }^{90} \mathrm{Sr} $放射源符合测量得到的单个事例的有效波形信号

    Figure 7.  Effective waveform signal of a single case obtained by $ { }^{90} \mathrm{Sr} $ radiation source coincidence measurement

    图 8  (a)阈值为波形信号幅度的10%时的飞行时间分布; (b) TOF探测器的符合时间分辨与波形信号幅度比例的关系

    Figure 8.  (a) Flight time distribution when the threshold is 10% of the amplitude of the waveform signal; (b) relationship between coincidence time resolution and the amplitude ratio of the waveform signal for the TOF detector

    图 9  单个波形信号前沿的两个不同区间内的数据点与线性拟合图 (a)区间为幅度的5%—30%; (b)区间为幅度的10%—30%

    Figure 9.  Graph of data points and linear fitting in two different intervals of the rising front of the waveform signal: (a) Range is 5%–30% of amplitude; (b) range is 10%–30% of amplitude

    图 10  将有效事例的波形信号前沿的数据点进行线性拟合, 与x (时间)轴交点的两个横坐标相减得到了时间差分布图  (a)区间为幅度的5%—30%; (b) 区间为幅度的10%—30%

    Figure 10.  Linear fitting of data points at the rising front of the waveform signal of effective cases, and the time difference distribution diagram is obtained by subtracting the two abscissa of the intersection point of the x (time) axis: (a) Range is 5%–30% of amplitude; (b) range is 10%–30% of amplitude

    图 11  单路波形信号时间差的计算

    Figure 11.  Calculation of time difference of single channel waveform signal

    图 12  单路波形信号的时间差分布  (a) CH1通道; (b) CH2通道

    Figure 12.  Distribution of the time difference of single channel waveform signal: (a) CH1 channel; (b) CH2 channel

    Baidu
  • [1]

    CEPC Study Group 2018 arXiv: 1809.00285[hep-ex]

    [2]

    An F, Bai Y, Chen C, Chen X, Chen Z, Da Costa J G, Zhou N 2019 Chin. Phys. C 43 043002Google Scholar

    [3]

    Cai C, Yu Z H, Zhang H H 2017 Nucl. Phys. B 921 181Google Scholar

    [4]

    Zheng T, Xu J, Cao L, Yu D, Wang W, Prell S, Cheung Y E, Ruan M 2021 Chin. Phys. C 45 023001Google Scholar

    [5]

    Chen C, Mo X, Selvaggi M, Li Q, Li G, Ruan M, Lou X 2017 arXiv: 1712.09517[hep-ex]

    [6]

    Chen Z X, Yang Y, Ruan M Q, Wang D Y, Li G, Jin S, Ban Y 2017 Chin. Phys. C 41 023003Google Scholar

    [7]

    Liu Z, Xu Y H, Zhang Y 2019 JHEP 6 1Google Scholar

    [8]

    Cao Q H, Li Y, Yan B, Zhang Y, Zhang Z 2016 Nucl. Phys. B 909 197Google Scholar

    [9]

    Chang W F, Ng J N, White G 2018 Phys. Rev. D 97 115015Google Scholar

    [10]

    Bai Y, Chen C H, Fang Y Q, Li G, Ruan M Q, Shi J Y, Wang B, Kong P Y, Lan B Y, Liu Z F 2020 Chin. Phys. C 44 013001Google Scholar

    [11]

    Chen L J, Zhu H B, Ai X C, Fu M, Kiuchi R, Liu Y, Liu Z A, Lou X C, Lu Y P, Ouyang Q, Zhou Y 2019 RDTM 3 1Google Scholar

    [12]

    Liang H, Zhu Y, Lai P Z, Ruan M 2022 arXiv: 2209.00397[phys.ins-det]

    [13]

    CEPC Study Group 2018 arXiv: 1811.10545[hep-ex]

    [14]

    张辉 2019 博士学位论文 (合肥: 中国科学技术大学)

    Zhang H 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [15]

    An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 arXiv: 1803.05134[phys.ins-det]

    [16]

    An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 Eur. Phys. J. C 78 1Google Scholar

    [17]

    Xin S 2021 Bull. Am. Phys. Soc. 66 5

    [18]

    Chiarello G, Corvaglia A, Grancagnolo F, Miccoli A, Panareo M, Tassielli G F 2019 Nucl. Instrum. Meth. Phys. Res. Sect. A 936 503Google Scholar

    [19]

    Dong M Y 2018 JINST 1 3Google Scholar

    [20]

    Ackermann U, Egger W, Sperr P, Dollinger G 2015 Nucl. Instrum. Meth. Phys. Res. Sect. A 786 5Google Scholar

    [21]

    王凤梅, 衡月昆, 吴冲, 赵小健, 孙志嘉, 吴金杰, 赵力, 赵玉达, 蒋林立 2006 高能物理与核物理 30 776

    Wang F M, Heng Y K, Wu C, Zhao X J, Sun Z J, Wu J J, Zhao L, Zhao Y D, Jiang L L 2006 High Energy Phys. Nucl. Phys. 30 776

    [22]

    Li S L, Heng Y K, Zhao T C, Fu Z W, Liu S L, Qian S, Liu S D, Chen X H, Jia R, Huang G R, Lei X C 2013 Chin. Phys. C 37 016003Google Scholar

    [23]

    Wiener R I, Surti S, Kyba C C M, Newcomer F M, Van Berg R, Karp J S 2008 2008 IEEE Nucl. Sci. Conf. R. Dresden, Germany, October 19–25, 2008 p4101

    [24]

    钱森, 付在伟, 宁哲, 王贻芳, 衡月昆, 祁鸣 2010 第十五届全国核电子学与核探测技术学术年会论文集 中国贵阳, 2010年8月13日, 第225页

    Qian S, Fu Z W, Ling Z, Wang Y F, Heng Y K, Qi M 2010 Proceedings of the 15th National Annual Conference on Nuclear Power Sub-science and Nuclear Detection Technology Guiyang, China, August 13, 2010 p225 (in Chinese)

Metrics
  • Abstract views:  5935
  • PDF Downloads:  222
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2022
  • Accepted Date:  28 March 2023
  • Available Online:  24 April 2023
  • Published Online:  20 June 2023
  • /

    返回文章
    返回
    Baidu
    map