Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entanglement criterion of N qubit system

Tan Wei-Han Zhao Chao-Ying Guo Qi-Zhi

Citation:

Entanglement criterion of N qubit system

Tan Wei-Han, Zhao Chao-Ying, Guo Qi-Zhi
cstr: 32037.14.aps.72.20221524
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In previous paper (2019 Int. J. Mod. Phys. B 33 1950197; 2020 Int. J. Mod. Phys. B 34 2050022), we presented a method to judge the entanglement of 2-qubit system. The necessary and sufficient conditions for the 2qubit system being separable are that if the relevant coefficients is positive and the principal density matrix is separable, then the system is separable, otherwise it is entangled. Now in this paper, we try to generalize this criterion to a 3-qubit system, and then, we further generalize the criterion of 3-qubit system to an N-qubit system. This is a complicated and interesting issue.
      Corresponding author: Zhao Chao-Ying, zchy49@163.com
    • Funds: Project supported by the Key Laboratory of Quantum Optics, Ministry of Education, China (Grant Nos. KF202004, KF202205).
    [1]

    Rossi R 2013 Physica A 392 2615Google Scholar

    [2]

    Horst B, Bartkiewicz K, Miranowicz A 2013 Phys. Rev. A 87 042108Google Scholar

    [3]

    Bartkiewicz K, Horst B, Lemr K, Miranowicz A 2013 Phys. Rev. A 88 052105Google Scholar

    [4]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [5]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881Google Scholar

    [6]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [7]

    Werner R F 1989 Phys. Rev. A 40 4277Google Scholar

    [8]

    Horodecki M, Horodecki P, Horodecki R 1996 Phys. Lett. A 223 1Google Scholar

    [9]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [10]

    Peres A 1996 Phys. Rev. Lett. 77 1413Google Scholar

    [11]

    Horodecki P 1997 Phys. Lett. A 232 333Google Scholar

    [12]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [13]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [14]

    Lewenstein M, Kraus B, Cirac J I, Horodecki P 2000 Phys. Rev. A 62 052310Google Scholar

    [15]

    Samsonowicz J, Kuś M, Lewenstein M, 2007 Phys. Rev. A 76 022314Google Scholar

    [16]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046Google Scholar

    [17]

    Zhao C Y, Guo Q Z, Tan W H 2019 Int. J. Mod. Phys. B 33 1950197Google Scholar

    [18]

    Zhao C Y, Guo Q Z, Tan W H 2020 Int. J. Mod. Phys. B 34 2050022Google Scholar

    [19]

    Schiff L I 1968 Quantum Mechanics (3rd Ed.) (NewYork: McGraw-Hill Book Company) pp8, 154

    [20]

    Boyd R W 2009 Nonlinear Optics (3rd Ed.) (NewYork: Academic Press) p130

  • 图 1  纠缠态的“N-AB-tree结构”

    Figure 1.  24-AB-tree to four 2 qubit string.

    图 2  2量子比特系统主密度矩阵系数${\kern 1 pt} {p_p}$$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $变化的三维曲线图, $r = 1$ (a) $\varDelta = 0.002$; (b) $\varDelta = 0.00103$; (c) $\varDelta = 0.0002$; (d) $\varDelta = 0.0001$

    Figure 2.  Principal entangled state${p_p}$of 2 qubit system with the parameters$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $, $r = 1$: (a)$\varDelta = 0.002$; (b)$\varDelta = $$ 0.00103$; (c)$\varDelta = 0.0002$; (d)$\varDelta = 0.0001$.

    图 3  3量子比特系统主密度矩阵系数${\kern 1 pt} {p_p}$$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $变化的三维曲线图 (a) ${r_a} = 0.867$, $\varDelta = 0.0001$; (b) ${r_b} = 0.547$, $\varDelta = 0.001$, $\xi + \eta = r_a^2 + r_b^2 = 1$

    Figure 3.  Principal entangle state${p_p}$of 3 qubit system with the parameters$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $: (a) ${r_a} = 0.867$, $\varDelta = 0.0001$; (b) ${r_b} = $$ 0.547$, $\varDelta = 0.001$, $\xi + \eta = r_a^2 + r_b^2 = 1$.

    图 5  3量子比特系统主密度矩阵系数${\kern 1 pt} {p_p}$$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $变化的三维曲线图, ${r_a} = {r_b} = 0.707$ (a) $\varDelta = 0.0001$; (b) $\varDelta = $$ 0.0002$; (c) $\varDelta = 0.00103$

    Figure 5.  Principal entangled state${p_p}$of 3 qubit system with the parameters$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $, ${r_a} = {r_b} = 0.707$; (a) $\varDelta = 0.0001$; (b) $\varDelta = 0.0002$; (c) $\varDelta = 0.00103$.

    图 4  3量子比特系统主密度矩阵系数${\kern 1 pt} {p_p}$$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $变化的三维曲线图 (a) ${r_a} = 0.724$, $\varDelta = 0.0001$; (b) ${r_b} = 0.652$, $\varDelta = 0.001$, $\xi + \eta = r_a^2 + r_b^2 = 1$

    Figure 4.  Principal entangled state${p_p}$of 3 qubit system with the parameters$\{ \theta , 0, 0.2\} $, $\{ w, - \pi , \pi \} $: (a) ${r_a} = 0.724$, $\varDelta = 0.0001$; (b) ${r_b} = 0.652$, $\varDelta = 0.001$, $\xi + \eta = r_a^2 + r_b^2 = 1$.

    图 6  图2(b)曲线的轮廓.

    Figure 6.  The profile of Fig. 2(b). ${p_{\rm{p}}}~~vs~~(\varDelta = 0.00102 + $$ x \times {10^{ - 5}})$.

    图 7  图5(c)曲线的轮廓.

    Figure 7.  The profile of Fig. 5(c). ${p_{\rm{p}}}~~vs~~(\varDelta = 0.00102 + $$ x \times {10^{ - 5}})$.

    Baidu
  • [1]

    Rossi R 2013 Physica A 392 2615Google Scholar

    [2]

    Horst B, Bartkiewicz K, Miranowicz A 2013 Phys. Rev. A 87 042108Google Scholar

    [3]

    Bartkiewicz K, Horst B, Lemr K, Miranowicz A 2013 Phys. Rev. A 88 052105Google Scholar

    [4]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [5]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881Google Scholar

    [6]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [7]

    Werner R F 1989 Phys. Rev. A 40 4277Google Scholar

    [8]

    Horodecki M, Horodecki P, Horodecki R 1996 Phys. Lett. A 223 1Google Scholar

    [9]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [10]

    Peres A 1996 Phys. Rev. Lett. 77 1413Google Scholar

    [11]

    Horodecki P 1997 Phys. Lett. A 232 333Google Scholar

    [12]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [13]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [14]

    Lewenstein M, Kraus B, Cirac J I, Horodecki P 2000 Phys. Rev. A 62 052310Google Scholar

    [15]

    Samsonowicz J, Kuś M, Lewenstein M, 2007 Phys. Rev. A 76 022314Google Scholar

    [16]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046Google Scholar

    [17]

    Zhao C Y, Guo Q Z, Tan W H 2019 Int. J. Mod. Phys. B 33 1950197Google Scholar

    [18]

    Zhao C Y, Guo Q Z, Tan W H 2020 Int. J. Mod. Phys. B 34 2050022Google Scholar

    [19]

    Schiff L I 1968 Quantum Mechanics (3rd Ed.) (NewYork: McGraw-Hill Book Company) pp8, 154

    [20]

    Boyd R W 2009 Nonlinear Optics (3rd Ed.) (NewYork: Academic Press) p130

Metrics
  • Abstract views:  6516
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2022
  • Accepted Date:  14 September 2022
  • Available Online:  29 December 2022
  • Published Online:  05 January 2023
  • /

    返回文章
    返回
    Baidu
    map