- 
				Electromagnetic metasurface, as a type of planar electromagnetic material consisting of single-layer or multilayer subwavelength artificial micro-structure, can efficiently control the polarization, amplitude and phase of electromagnetic wave on a subwavelength scale. However, confining electromagnetic waves to a deep-subwavelength scale generally is at the cost of a large loss, such as radiation loss, Ohmic loss. Interestingly, non-Hermitian physics provides us a new way to transform the disadvantage of loss into a new degree of freedom in metasurface design, paving the way to expanding the functionalities of metasurfaces. In recent years, the extraordinary effects in the non-Hermitian electromagnetic metasurfaces have attracted a lot of attention. In this review, we discuss the perfect absorption, exceptional points and surfaces waves of non-Hermitian electromagnetic metasurfaces, and point out the challenges and potentials in this field.
- 
										Keywords:
										
 - metasurface /
 - non-Hermitian physics /
 - perfect absorption /
 - exceptional point
 
[1] Cui T J, Smith D R, Liu R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer)
[2] Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons, Inc. )
[3] Cai W, Shalaev V 2009 Optical Metamaterials: Fundamentals and Applications (New York: Springer)
[4] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009
Google Scholar
						[5] Yu N, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
						[6] Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889
Google Scholar
						[7] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1
Google Scholar
						[8] Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067
Google Scholar
						[9] Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818
Google Scholar
						[10] Chen H, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401
Google Scholar
						[11] Liu S, Cui T J 2017 Adv. Opt. Mater. 2017 1700624
[12] Turpin J P, Bossard J A, Morgan K L, Werner D H, Werner P L 2014 Int. J. Antennas Propag. 2014 1
[13] Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303
Google Scholar
						[14] Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195
Google Scholar
						[15] Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010
Google Scholar
						[16] 邓俊鸿, 李贵新 2017 66 147803
Google Scholar
						Deng J H, Li G X 2017 Acta Phys. Sin. 66 147803
Google Scholar
						[17] Krasnok A, Tymchenko M, Alù A 2018 Mater. Today 21 8
Google Scholar
						[18] He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 2018 1800415
[19] Neshev D, Aharonovich I 2018 Light Sci. Appl. 7 58
Google Scholar
						[20] Chen M, Kim M, Wong A M H, Eleftheriades G V 2018 Nanophotonics 7 1207
Google Scholar
						[21] Ataloglou V G, Chen M, Kim M, Eleftheriades G V 2021 IEEE J. Microwaves 1 374
Google Scholar
						[22] Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380
Google Scholar
						[23] Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 eaat3100
Google Scholar
						[24] Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692
Google Scholar
						[25] Zang X, Yao B, Chen L, Xie J, Guo X V, Balakin A P, Shkurinov A, Zhuang S 2021 Light:Advanced Manufacturing 2 1
Google Scholar
						[26] Du K, Barkaoui H, Zhang X, Jin L, Song Q, Xiao S 2022 Nanophotonics 11 1761
Google Scholar
						[27] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139
Google Scholar
						[28] Kamali S M, Arbabi E, Arbabi A, Faraon A 2018 Nanophotonics 7 1041
Google Scholar
						[29] Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Yang P, Wang S, Duan H 2020 Nanophotonics 9 3755
Google Scholar
						[30] 范庆斌, 徐挺 2017 66 144208
Google Scholar
						Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208
Google Scholar
						[31] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
						[32] Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427
Google Scholar
						[33] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
						[34] Sun S, Yang K, Wang C, Juan T, Chen W T, Liao C Y, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223
Google Scholar
						[35] Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561
Google Scholar
						[36] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
Google Scholar
						[37] Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light Sci. Appl. 5 e16076
Google Scholar
						[38] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
Google Scholar
						[39] Luo J, Chu H, Peng R, Wang M, Li J, Lai Y 2021 Light Sci. Appl. 10 89
Google Scholar
						[40] Fan H, Li J, Lai Y, Luo J 2021 Phys. Rev. Appl. 16 044064
Google Scholar
						[41] Ma Z, Fan H, Zhou H, Huang M, Luo J 2021 Opt. Express 29 39186
Google Scholar
						[42] Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342
Google Scholar
						[43] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190
Google Scholar
						[44] Wang S, Wu P C, Su V, Lai Y, Chu C H, Chen J, Lu S, Chen J, Xu B, Kuan C, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187
Google Scholar
						[45] Wang S, Wu P C, Su V, Lai Y, Chen M, Kuo H Y, Chen B H, Chen Y H, Huang T, Wang J, Lin R, Kuan C, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227
Google Scholar
						[46] Li L, Liu Z, Ren X, Wang S, Su V, Chen M, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P 2020 Science 368 1487
Google Scholar
						[47] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807
Google Scholar
						[48] Huang L, Chen X, Muhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808
Google Scholar
						[49] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308
Google Scholar
						[50] Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003
Google Scholar
						[51] Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567
Google Scholar
						[52] Jiang S, Xiong X, Hu Y, Hu Y, Ma G, Peng R, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[53] Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396
Google Scholar
						[54] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310
Google Scholar
						[55] Chu H, Li Q, Liu B, Luo J, Sun S, Hang Z H, Zhou L, Lai Y 2018 Light Sci. Appl. 7 50
Google Scholar
						[56] Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383
Google Scholar
						[57] Boltasseva A, Atwater H A 2011 Science 331 290
Google Scholar
						[58] Baranov D G, Zuev D A, Lepeshov S I, Kotov O V, Krasnok A E, Evlyukhin A B, Chichkov B N 2017 Optica 4 814
Google Scholar
						[59] Bender C M 2007 Rep. Prog. Phys. 70 947
Google Scholar
						[60] Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249
[61] Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 1
[62] Feng L, ElGanainy R, Ge L 2017 Nat. Photonics 11 752
Google Scholar
						[63] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11
Google Scholar
						[64] Qi B, Chen H Z, Ge L, Berini P, Ma R M 2019 Adv. Opt. Mater. 7 1900694
Google Scholar
						[65] Huang Y, Shen Y, Min C, Fan S, Veronis G 2017 Nanophotonics 6 977
Google Scholar
						[66] Miri M, Alù A 2019 Science 363 eaar7709
Google Scholar
						[67] Özdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783
Google Scholar
						[68] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, Chen Y F 2019 Adv. Mater. 2019 1903639
[69] Luo J, Lai Y 2022 Front. Phys. 10 845624
Google Scholar
						[70] Wiersig J 2020 Photonics Res. 8 1457
Google Scholar
						[71] Krasnok A, Nefedkin N, Alu A 2021 IEEE Antennas Propag. Mag. 63 110
Google Scholar
						[72] Li Z, Cao G, Li C, Dong S, Deng Y, Liu X, Ho J S, Qiu C 2021 Prog. Electromagn. Res. 171 1
Google Scholar
						[73] 齐慧欣, 王晓晓, 胡小永, 龚旗煌 2020 红外与激光工程 49 20201029
Google Scholar
						Qi H X, Wang X X, Hu X Y, Q H 2020 Infrared Laser Eng. 49 20201029
Google Scholar
						[74] Fan Y, Liang H, Li J, Tsai D P, Zhang S 2022 ACS Photonics DOI: 10.1021/acsphotonics.2 c00816
[75] Miri M A, LiKamWa P, Christodoulides D N 2012 Opt. Lett. 37 764
Google Scholar
						[76] Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972
Google Scholar
						[77] Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K, Rotter S 2014 Nat. Commun. 5 4034
Google Scholar
						[78] Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975
Google Scholar
						[79] Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M, Feng L 2016 Science 353 464
Google Scholar
						[80] Longhi S 2010 Phys. Rev. A 82 031801(R
[81] Gu Z, Zhang N, Lyu Q, Li M, Xiao S, Song Q 2016 Laser Photonics Rev. 10 588
Google Scholar
						[82] Wong Z J, Xu Y, Kim J, O'Brien K, Wang Y, Feng L, Zhang X 2016 Nat. Photonics 10 796
Google Scholar
						[83] Bai P, Ding K, Wang G, Luo J, Zhang Z, Chan C T, Wu Y, Lai Y 2016 Phys. Rev. A 94 063841
Google Scholar
						[84] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
Google Scholar
						[85] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167
Google Scholar
						[86] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108
Google Scholar
						[87] Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S, Joannopoulos J D, Soljačić M 2015 Nature 525 354
Google Scholar
						[88] Luo L, Shao Y, Li J, Fan R, Peng R, Wang M, Luo J, Lai Y 2021 Opt. Express 29 14345
Google Scholar
						[89] Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387
Google Scholar
						[90] Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2020 Phys. Rev. Appl. 15 014009
[91] Assawaworrarit S, Fan S 2020 Nat. Electron. 3 273
Google Scholar
						[92] Wiersig J 2014 Phys. Rev. Lett. 112 203901
Google Scholar
						[93] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187
Google Scholar
						[94] Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192
Google Scholar
						[95] Wang S, Hou B, Lu W, Chen Y, Zhang Z Q, Chan C T 2019 Nat. Commun. 10 832
Google Scholar
						[96] Lai Y, Lu Y, Suh M, Yuan Z, Vahala K 2019 Nature 576 65
Google Scholar
						[97] Dong Z, Li Z, Yang F, Qiu C, Ho J S 2019 Nat. Electron. 2 335
Google Scholar
						[98] De Carlo M, De Leonardis F, Soref R A, Colatorti L, Passaro V M N 2022 Sensors-Basel 22 3977
Google Scholar
						[99] Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S 2014 Laser Photonics Rev. 8 495
Google Scholar
						[100] Ra'Di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001
Google Scholar
						[101] Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064
Google Scholar
						[102] Alaee R, Albooyeh M, Rockstuhl C 2017 J. Phys. D 50 503002
Google Scholar
						[103] Feng L, Huo P, Liang Y, Xu T 2019 Adv. Mater. 2019 1903787
[104] 王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 69 134101
Google Scholar
						Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101
Google Scholar
						[105] Lawrence M, Xu N, Zhang X, Cong L, Han J, Zhang W, Zhang S 2014 Phys. Rev. Lett. 113 093901
Google Scholar
						[106] Krešić I, Makris K G, Leonhardt U, Rotter S 2022 Phys. Rev. Lett. 128 183901
Google Scholar
						[107] Coppolaro M, Moccia M, Castaldi G, Engheta N, Galdi V 2020 Proc. Natl. Acad. Sci. U.S.A. 117 13921
Google Scholar
						[108] Correas-Serrano D, Alù A, Gomez-Diaz J S 2017 Phys. Rev. B 96 075436
Google Scholar
						[109] Moccia M, Castaldi G, Alù A, Galdi V 2020 ACS Photonics 7 2064
Google Scholar
						[110] Coppolaro M, Moccia M, Castaldi G, Alu A, Galdi V 2021 IEEE Trans. Microwave Theory Tech. 69 2060
Google Scholar
						[111] Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W 2008 Phys. Rev. Lett. 100 207402
Google Scholar
						[112] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104
Google Scholar
						[113] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342
Google Scholar
						[114] Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503
Google Scholar
						[115] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901
Google Scholar
						[116] Ye Y Q, Jin Y, He S 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 498
Google Scholar
						[117] Sun J, Liu L, Dong G, Zhou J 2011 Opt. Express 19 21155
Google Scholar
						[118] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D 43 225102
Google Scholar
						[119] Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104
Google Scholar
						[120] Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 044019
Google Scholar
						[121] Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402
Google Scholar
						[122] Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443
Google Scholar
						[123] Ding F, Jin Y, Li B, Cheng H, Mo L, He S 2014 Laser Photonics Rev. 8 946
Google Scholar
						[124] Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J 2016 Nat. Photonics 10 393
Google Scholar
						[125] Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227
Google Scholar
						[126] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403
Google Scholar
						[127] Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994
Google Scholar
						[128] Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20
Google Scholar
						[129] Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A 2013 Nat. Mater. 12 158
Google Scholar
						[130] Luo J, Li S, Hou B, Lai Y 2014 Phys. Rev. B 90 165128
Google Scholar
						[131] Wang T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904
Google Scholar
						[132] Luo J, Lai Y 2019 Opt. Express 27 15800
Google Scholar
						[133] Tong W, Luo J, Sun Z, Lai Y 2020 Appl. Phys. Express 13 032001
Google Scholar
						[134] Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light Sci. Appl. 10 138
Google Scholar
						[135] Huang Y, Kaj K, Chen C, Yang Z, Ul Haque S R, Zhang Y, Zhao X, Averitt R D, Zhang X 2022 ACS Photonics 9 1150
Google Scholar
						[136] Potton R J 2004 Rep. Prog. Phys. 67 717
Google Scholar
						[137] Fan H, Chu H, Luo H, Lai Y, Gao L, Luo J 2022 Optica 9 1138
[138] Chong Y D, Ge L, Cao H, Stone A D 2010 Phys. Rev. Lett. 105 053901
Google Scholar
						[139] Zhang J, MacDonald K F, Zheludev N I 2012 Light Sci. Appl. 1 e18
Google Scholar
						[140] Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C 2015 Phys. Rev. B 91 220301(R
[141] Wang C, Shen X, Chu H, Luo J, Zhou X, Hou B, Peng R, Wang M, Lai Y 2022 Appl. Phys. Lett. 120 171703
Google Scholar
						[142] Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903
Google Scholar
						[143] Luo J, Liu B, Hang Z H, Lai Y 2018 Laser Photonics Rev. 2018 1800001
[144] Wang D, Luo J, Sun Z, Lai Y 2021 Opt. Express 29 5247
Google Scholar
						[145] Bai P, Luo J, Chu H, Lu W, Lai Y 2020 Opt. Lett. 45 6635
Google Scholar
						[146] Haus H A, Huang W 1991 Proc. IEEE 79 1505
Google Scholar
						[147] Doiron C F, Naik G V 2019 Adv. Mater. 31 1904154
Google Scholar
						[148] Yang F, Hwang A, Doiron C, Naik G V 2021 Opt. Mater. Express 11 2326
Google Scholar
						[149] Yang F, Prasad C S, Li W, Lach R, Everitt H O, Naik G V 2022 Nanophotonics 11 1159
Google Scholar
						[150] Liang Y, Gaimard Q, Klimov V, Uskov A, Benisty H, Ramdane A, Lupu A 2021 Phys. Rev. B 103 045419
Google Scholar
						[151] Yu J, Ma B, Ouyang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290
Google Scholar
						[152] Zhang X, Zhang Z, Wang Q, Zhu S, Liu H 2019 ACS Photonics 6 2671
Google Scholar
						[153] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243
Google Scholar
						[154] Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
Google Scholar
						[155] Kang M, Liu F, Li J 2013 Phys. Rev. A 87 053824
Google Scholar
						[156] Park S H, Lee S, Baek S, Ha T, Lee S, Min B, Zhang S, Lawrence M, Kim T 2020 Nanophotonics 9 1031
Google Scholar
						[157] Kang M, Chen J, Chong Y D 2016 Phys. Rev. A 94 033834
Google Scholar
						[158] Wang D, Li C, Zhang C, Kang M, Zhang X, Jin B, Tian Z, Li Y, Zhang S, Han J, Zhang W 2017 Appl. Phys. Lett. 110 021104
Google Scholar
						[159] Jin B, Tan W, Zhang C, Wu J, Chen J, Zhang S, Wu P 2018 Adv. Theory Simul. 1 1800070
Google Scholar
						[160] Li J, Fu J, Liao Q, Ke S 2019 J. Opt. Soc. Am. B:Opt. Phys. 36 2492
Google Scholar
						[161] Cao T, Cao Y, Fang L 2019 Nanoscale 11 15828
Google Scholar
						[162] Li S, Zhang X, Xu Q, Liu M, Kang M, Han J, Zhang W 2020 Opt. Express 28 20083
Google Scholar
						[163] Leung H M, Gao W, Zhang R, Zhao Q, Wang X, Chan C T, Li J, Tam W Y 2020 Opt. Express 28 503
Google Scholar
						[164] Xu J, Ouyang S, Luo L, Shen Y, Zou L, Tan Z, Deng X 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1847
Google Scholar
						[165] Baek S, Park S H, Oh D, Lee K, Lee S, Lim H, Ha T, Park H, Zhang S, Yang L, Min B, Kim T T 2022 arXiv: 2208.10675 [physics.optics]
[166] Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H, Richter A 2001 Phys. Rev. Lett. 86 787
Google Scholar
						[167] Gu X, Bai R, Zhang C, Jin X R, Zhang Y Q, Zhang S, Lee Y P 2017 Opt. Express 25 11778
Google Scholar
						[168] Sakhdari M, Farhat M, Chen P 2017 New J. Phys. 19 65002
Google Scholar
						[169] Chong Y D, Zhu W, Premaratne M 2014 Appl. Phys. Lett. 105 131103
Google Scholar
						[170] Chu H, Xiong X, Gao Y, Luo J, Jing H, Li C, Peng R, Wang M, Lai Y 2021 Sci. Adv. 7 eabj0935
Google Scholar
						[171] Ge L, Chong Y D, Stone A D 2012 Phys. Rev. A 85 023802
Google Scholar
						[172] Fleury R, Sounas D L, Alù A 2014 Phys. Rev. Lett. 113 023903
Google Scholar
						[173] Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018
[174] Sounas D L, Fleury R, Alù A 2015 Phys. Rev. Appl. 4 014005
Google Scholar
						[175] Ra'Di Y, Sounas D L, Alù A, Tretyakov S A 2016 Phys. Rev. B 93 235427
Google Scholar
						[176] Luo J, Li J, Lai Y 2018 Phys. Rev. X 8 031035
[177] Valagiannopoulos C A, Monticone F, Alù A 2016 J. Opt. 18 044028
Google Scholar
						[178] Savoia S, Valagiannopoulos C A, Monticone F, Castaldi G, Galdi V 2017 Phys. Rev. B 95 115114
Google Scholar
						[179] Kord A, Sounas D L, Alù A 2018 Phys. Rev. Appl. 10 054040
Google Scholar
						[180] Sakhdari M, Estakhri N M, Bagci H, Chen P 2018 Phys. Rev. Appl. 10 024030
Google Scholar
						[181] Nicolussi M, Riley J A, Pacheco-Peña V 2021 Appl. Phys. Lett. 119 263507
Google Scholar
						[182] Liberal I, Engheta N 2017 Nat. Photonics 11 149
Google Scholar
						[183] 罗杰, 赖耘 2019 物理 48 426
Luo J, Lai Y 2019 Physics 48 426
[184] Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903
Google Scholar
						[185] Luo J, Hang Z H, Chan C T, Lai Y 2015 Laser Photonics Rev. 9 523
Google Scholar
						[186] Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058
Google Scholar
						[187] Thongrattanasiri S, Koppens F H L, García De Abajo F J 2012 Phys. Rev. Lett. 108 047401
Google Scholar
						[188] Farhat M, Yang M, Ye Z, Chen P 2020 ACS Photonics 7 2080
Google Scholar
						[189] Ye D, Chang K, Ran L, Xin H 2014 Nat. Commun. 5 5841
Google Scholar
						[190] Dong S, Hu G, Wang Q, Jia Y, Zhang Q, Cao G, Wang J, Chen S, Fan D, Jiang W, Li Y, Alù A, Qiu C 2020 ACS Photonics 7 3321
Google Scholar
						[191] Cao G, Zhao C, Dong S, Liu K, Zeng Y, Zhang Q, Zhang Y, Li Y, Zhu H 2022 Opt. Laser Technol. 156 108497
Google Scholar
						[192] Li M, Wang Z, Yin W, Li E, Chen H 2022 IEEE Trans. Antennas Propag. DOI: 10.1109/TAP.2022.3209282
[193] Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M 2014 Phys. Rev. A 89 065801
Google Scholar
						[194] Gao F, Yuan P, Sun Z, Deng J, Li Y, Jin G, Yan B 2022 Adv. Photonics Res. 3 2200019
Google Scholar
						[195] Gao F, Sun Z, Yuan P, Deng J, Jin G, Zhou J, Liu H, Yan B 2022 Appl. Phys. Lett. 121 091701
Google Scholar
						[196] Kang M, Zhang T, Zhao B, Sun L, Chen J 2021 Opt. Express 29 11582
Google Scholar
						[197] Xiao S, Gear J, Rotter S, Li J 2016 New J. Phys. 18 085004
Google Scholar
						[198] Park J, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, Lo Y, Kanté B 2020 Nat. Phys. 16 462
Google Scholar
						[199] Chen P, Jung J 2016 Phys. Rev. Appl. 5 064018
Google Scholar
						[200] Wu T, Zhang W, Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R, Duan P, Li J, Wang B, Shi L, Zi J, Zhang X 2020 Phys. Rev. Lett. 124 083901
Google Scholar
						[201] Kang M, Zhu W, Rukhlenko I D 2017 Phys. Rev. A 96 063823
Google Scholar
						[202] Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P 2021 Science 373 1133
Google Scholar
						[203] Kolkowski R, Kovaios S, Koenderink A F 2021 Phys. Rev. Res. 3 023185
Google Scholar
						[204] Zhao B, Sun L, Chen J 2020 Opt. Express 28 28896
Google Scholar
						[205] Falcone F, Lopetegi T, Laso M, Baena J, Bonache J, Beruete M, Marqués R, Martín F, Sorolla M 2004 Phys. Rev. Lett. 93 197401
Google Scholar
						[206] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[207] Luo J, Yang Y, Yao Z, Lu W, Hou B, Hang Z H, Chan C T, Lai Y 2016 Phys. Rev. Lett. 117 223901
Google Scholar
						[208] Ji W, Luo J, Lai Y 2019 Opt. Express 27 19463
Google Scholar
						[209] Bisharat D A J, Sievenpiper D F 2017 Phys. Rev. Lett. 119 106802
Google Scholar
						[210] Kong X, Bisharat D J, Xiao G, Sievenpiper D F 2019 Phys. Rev. A 99 033842
Google Scholar
						[211] Singh S, Davis R J, Bisharat D J, Lee J, Kandil S M, Wen E, Yang X, Zhou Y, Bandaru P R, Sievenpiper D F 2022 IEEE Antennas Propag. Mag. 64 51
Google Scholar
						[212] Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163
Google Scholar
						[213] Luo L, Luo J, Chu H, Lai Y 2021 Adv. Photonics Res. 2 2000081
Google Scholar
						[214] Nye N S, Halawany A E, Markos C, Khajavikhan M, Christodoulides D N 2020 Phys. Rev. Appl. 13 064005
Google Scholar
						[215] Deng Z L, Li F J, Li H, Li X, Alù A 2022 Laser Photonics Rev. 16 2100617
Google Scholar
						[216] Zhu X, Xu Y, Zou Y, Sun X, He C, Lu M, Liu X, Chen Y 2016 Appl. Phys. Lett. 109 111101
Google Scholar
						[217] Mortensen N A, Gonçalves P A D, Khajavikhan M, Christodoulides D N, Tserkezis C, Wolff C 2018 Optica 5 1342
Google Scholar
						 - 
				
    
    
    
图 2 谐振型完美吸波超表面 (a) 左: 超表面单元结构示意图; 右: 吸波性能的仿真结果[111]; (b) 光学吸波超表面单元示意图, 顶部为金属矩形阵列[112]; (c) 光学吸波超表面单元示意图, 顶部为金属圆盘阵列[113]; (d) 基于耦合模理论的等效单通道谐振腔模型[114]; (e) 复合超表面结构单元, 不同尺寸的谐振单元在横向上排布[115]; (f) 复合超表面结构单元, 不同尺寸的谐振单元在纵向上排布[116]; (g) 拥有三个谐振频点的分形结构单元[119]
Figure 2. Resonant absorbing metasurfaces. (a) Left: Illustration of the metasurface unit cell; Right: Simulated absorption spectrum[111]. (b) An optical absorbing metasurface unit cell with an array of metallic disks on the top[112]. (c) An optical absorbing metasurface unit cell with an array of rectangular metallic particles on the top[113]. (d) The equivalent single-port resonator model based on coupled mode theory[114]. (e) Composite metasurface unit cell consisting of horizontally arranged resonators of different sizes[115]. (f) Composite metasurface unit cell consisting of vertically arranged resonators of different sizes[116]. (g) Fractal unit cell exhibiting three resonant frequencies[119].
图 3 非谐振型超宽频完美吸波超表面 (a) 左: 布儒斯特超表面示意图; 中: 原理示意图; 右: 吸波性能的仿真结果[40]; (b) 超宽频相干完美吸收的原理示意图[140]; (c) 超宽频相干完美吸收的测量装置示意图, 以及实验测得的反射率和吸收率与频率的关系[139]
Figure 3. Non-resonant ultra-broadband absorbing metasurfaces. (a) Left: Illustration of the Brewster metasurface; Middle: The underlying physics; Right: Simulated absorption spectrum[40]. (b) Illustration of ultra-broadband coherent perfect absorption[140]. (c) Illustration of the experimental setup, and measured reflectance and absorptance as the function of frequency[139].
图 4 非厄米电磁超表面的耦合理论模型 (a) 左: 两个耦合谐振单元组成的二能级系统; 右: 本征值的演化; (b) 左: 两个具有正交激励方向的偶极子组成的二能级系统; 右:本征值的演化
Figure 4. Coupling model of non-Hermitian electromagnetic metasurfaces. (a) Left: A generic two-level system consisting of two coupled resonators; Right: The evolution of its eigenvalues. (b) Left: A generic two-level system consisting of two perpendicular dipoles; Right: The evolution of its eigenvalues.
图 5 非厄米电磁超表面 (a) 左: 由开口方向垂直的开口环谐振器阵列构成的非厄米超表面; 右: 圆偏振入射波在超表面中的透射率[105]; (b) 左: 非厄米超表面单个单元的几何结构; 右: 本征态在参数空间中围绕奇异点的演化[156]
Figure 5. Non-Hermitian electromagnetic metasurfaces. (a) Left: A non-Hermitian metasurfaces consisting of an array of orthogonally oriented split ring resonators; Right: The transmission of circularly polarized waves on this metasurface[105]. (b) Left: Schematic of the metasurface unit cell; Right: The evolution of the eigenstates in parameter space as the EP is encircled[156].
图 7 PT对称电磁超表面中的奇异点及单向无反射特性 (a) 左: 由一对平衡损耗与增益的超表面构成的PT对称超表面系统示意图; 右: 奇异点诱导的单向无反射负折射现象[172]; (b) 奇异点诱导的单向无反射成像[173]; (c) 左: 当超表面之间为零折射率介质时, 系统中的两类相变奇异点趋于合并; 右: 合并奇异点诱导的对杂质免疫的完美传输效应[176]
Figure 7. EPs and unidirectional reflectionless properties of PT-symmetric electromagnetic metasurfaces. (a) Left: Illustration of a PT-symmetric metasurface system composed of a pair of metasurfaces with balanced loss and gain; Right: EP-induced unidirectional reflectionless negative refraction[172]. (b) EP-induced unidirectional reflectionless imaging[173]. (c) Left: Two classes of EPs tend to coalesce into one when the material between the two metasurface is an zero-index medium; Right: Coalesced EP-induced impurity-immune perfect wave transmission[176].
图 8 非厄米超表面中奇异点在传感方面的应用 (a) 左: Diabolic点(DP)的频率分裂量与微扰强度
$\varepsilon $ 的关系; 右: 奇异点的频率分裂量与微扰强度$\varepsilon $ 的关系[94]; (b) 左: 由上下两层在横向上错位的金条阵列组成的等离激元超表面; 右: 在奇异点下频率分裂量随微扰强度$\varepsilon $ 的变化[198]Figure 8. Sensing applications of EPs in non-Hermitian metasurfaces. (a) Left: Frequency splitting of DP versus the perturbation strength
$\varepsilon $ ; Right: Frequency splitting of EP versus the perturbation strength$\varepsilon $ [94]. (b) Left: A plasmonic metasurface composed of two layers of gold bars with a lateral shift; Right: The frequency splitting of EP versus the perturbation strength$\varepsilon $ [198].图 9 非厄米超表面中奇异点在相位操控上的应用 (a) 左: 超表面结构单元示意图; 右: 实验样品照片图[163]; (b) 实验测得的交叉偏振衍射图样随垂直狭槽的间距的变化[163]
Figure 9. Phase control with EPs in non-Hermitian metasurfaces. (a) Left: illustration of the metasurface unit cell. Right: The photograph of the fricated sample[163]. (b) Experimental cross-polarization diffraction patterns for different separation distance between orthogonal slots[163].
图 10 非厄米电磁超表面上的奇异表面波 (a) 左: 各向异性非厄米超表面上的自准直表面等离激元波; 右: 基于的石墨烯的设计的各向异性非厄米超表面[108]; (b) 左: PT对称超表面上的线波示意图; 右: 线波的仿真结果[109]
Figure 10. Extraordinary surface waves on non-Hermitian electromagnetic metasurfaces. (a) Left: Surface plasmon canalization on an anisotropic non-Hermitian metasurface; Right: The graphene-based anisotropic non-Hermitian metasurface[108]. (b) Left: Line waves on a PT-symmetric metasurface. Right: The simulation results[109].
 - 
				
[1] Cui T J, Smith D R, Liu R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer)
[2] Engheta N, Ziolkowski R W 2006 Metamaterials: Physics and Engineering Explorations (Hoboken: John Wiley & Sons, Inc. )
[3] Cai W, Shalaev V 2009 Optical Metamaterials: Fundamentals and Applications (New York: Springer)
[4] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009
Google Scholar
						[5] Yu N, Capasso F 2014 Nat. Mater. 13 139
Google Scholar
						[6] Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photonics 8 889
Google Scholar
						[7] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1
Google Scholar
						[8] Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067
Google Scholar
						[9] Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818
Google Scholar
						[10] Chen H, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401
Google Scholar
						[11] Liu S, Cui T J 2017 Adv. Opt. Mater. 2017 1700624
[12] Turpin J P, Bossard J A, Morgan K L, Werner D H, Werner P L 2014 Int. J. Antennas Propag. 2014 1
[13] Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303
Google Scholar
						[14] Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195
Google Scholar
						[15] Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010
Google Scholar
						[16] 邓俊鸿, 李贵新 2017 66 147803
Google Scholar
						Deng J H, Li G X 2017 Acta Phys. Sin. 66 147803
Google Scholar
						[17] Krasnok A, Tymchenko M, Alù A 2018 Mater. Today 21 8
Google Scholar
						[18] He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 2018 1800415
[19] Neshev D, Aharonovich I 2018 Light Sci. Appl. 7 58
Google Scholar
						[20] Chen M, Kim M, Wong A M H, Eleftheriades G V 2018 Nanophotonics 7 1207
Google Scholar
						[21] Ataloglou V G, Chen M, Kim M, Eleftheriades G V 2021 IEEE J. Microwaves 1 374
Google Scholar
						[22] Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380
Google Scholar
						[23] Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 eaat3100
Google Scholar
						[24] Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692
Google Scholar
						[25] Zang X, Yao B, Chen L, Xie J, Guo X V, Balakin A P, Shkurinov A, Zhuang S 2021 Light:Advanced Manufacturing 2 1
Google Scholar
						[26] Du K, Barkaoui H, Zhang X, Jin L, Song Q, Xiao S 2022 Nanophotonics 11 1761
Google Scholar
						[27] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139
Google Scholar
						[28] Kamali S M, Arbabi E, Arbabi A, Faraon A 2018 Nanophotonics 7 1041
Google Scholar
						[29] Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Yang P, Wang S, Duan H 2020 Nanophotonics 9 3755
Google Scholar
						[30] 范庆斌, 徐挺 2017 66 144208
Google Scholar
						Fan Q B, Xu T 2017 Acta Phys. Sin. 66 144208
Google Scholar
						[31] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
						[32] Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427
Google Scholar
						[33] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
						[34] Sun S, Yang K, Wang C, Juan T, Chen W T, Liao C Y, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223
Google Scholar
						[35] Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561
Google Scholar
						[36] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
Google Scholar
						[37] Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light Sci. Appl. 5 e16076
Google Scholar
						[38] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
Google Scholar
						[39] Luo J, Chu H, Peng R, Wang M, Li J, Lai Y 2021 Light Sci. Appl. 10 89
Google Scholar
						[40] Fan H, Li J, Lai Y, Luo J 2021 Phys. Rev. Appl. 16 044064
Google Scholar
						[41] Ma Z, Fan H, Zhou H, Huang M, Luo J 2021 Opt. Express 29 39186
Google Scholar
						[42] Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342
Google Scholar
						[43] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190
Google Scholar
						[44] Wang S, Wu P C, Su V, Lai Y, Chu C H, Chen J, Lu S, Chen J, Xu B, Kuan C, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187
Google Scholar
						[45] Wang S, Wu P C, Su V, Lai Y, Chen M, Kuo H Y, Chen B H, Chen Y H, Huang T, Wang J, Lin R, Kuan C, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227
Google Scholar
						[46] Li L, Liu Z, Ren X, Wang S, Su V, Chen M, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P 2020 Science 368 1487
Google Scholar
						[47] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807
Google Scholar
						[48] Huang L, Chen X, Muhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808
Google Scholar
						[49] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308
Google Scholar
						[50] Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003
Google Scholar
						[51] Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567
Google Scholar
						[52] Jiang S, Xiong X, Hu Y, Hu Y, Ma G, Peng R, Sun C, Wang M 2014 Phys. Rev. X 4 021026
[53] Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396
Google Scholar
						[54] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310
Google Scholar
						[55] Chu H, Li Q, Liu B, Luo J, Sun S, Hang Z H, Zhou L, Lai Y 2018 Light Sci. Appl. 7 50
Google Scholar
						[56] Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383
Google Scholar
						[57] Boltasseva A, Atwater H A 2011 Science 331 290
Google Scholar
						[58] Baranov D G, Zuev D A, Lepeshov S I, Kotov O V, Krasnok A E, Evlyukhin A B, Chichkov B N 2017 Optica 4 814
Google Scholar
						[59] Bender C M 2007 Rep. Prog. Phys. 70 947
Google Scholar
						[60] Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249
[61] Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 1
[62] Feng L, ElGanainy R, Ge L 2017 Nat. Photonics 11 752
Google Scholar
						[63] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2017 Nat. Phys. 14 11
Google Scholar
						[64] Qi B, Chen H Z, Ge L, Berini P, Ma R M 2019 Adv. Opt. Mater. 7 1900694
Google Scholar
						[65] Huang Y, Shen Y, Min C, Fan S, Veronis G 2017 Nanophotonics 6 977
Google Scholar
						[66] Miri M, Alù A 2019 Science 363 eaar7709
Google Scholar
						[67] Özdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783
Google Scholar
						[68] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, Chen Y F 2019 Adv. Mater. 2019 1903639
[69] Luo J, Lai Y 2022 Front. Phys. 10 845624
Google Scholar
						[70] Wiersig J 2020 Photonics Res. 8 1457
Google Scholar
						[71] Krasnok A, Nefedkin N, Alu A 2021 IEEE Antennas Propag. Mag. 63 110
Google Scholar
						[72] Li Z, Cao G, Li C, Dong S, Deng Y, Liu X, Ho J S, Qiu C 2021 Prog. Electromagn. Res. 171 1
Google Scholar
						[73] 齐慧欣, 王晓晓, 胡小永, 龚旗煌 2020 红外与激光工程 49 20201029
Google Scholar
						Qi H X, Wang X X, Hu X Y, Q H 2020 Infrared Laser Eng. 49 20201029
Google Scholar
						[74] Fan Y, Liang H, Li J, Tsai D P, Zhang S 2022 ACS Photonics DOI: 10.1021/acsphotonics.2 c00816
[75] Miri M A, LiKamWa P, Christodoulides D N 2012 Opt. Lett. 37 764
Google Scholar
						[76] Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972
Google Scholar
						[77] Brandstetter M, Liertzer M, Deutsch C, Klang P, Schöberl J, Türeci H E, Strasser G, Unterrainer K, Rotter S 2014 Nat. Commun. 5 4034
Google Scholar
						[78] Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975
Google Scholar
						[79] Miao P, Zhang Z, Sun J, Walasik W, Longhi S, Litchinitser N M, Feng L 2016 Science 353 464
Google Scholar
						[80] Longhi S 2010 Phys. Rev. A 82 031801(R
[81] Gu Z, Zhang N, Lyu Q, Li M, Xiao S, Song Q 2016 Laser Photonics Rev. 10 588
Google Scholar
						[82] Wong Z J, Xu Y, Kim J, O'Brien K, Wang Y, Feng L, Zhang X 2016 Nat. Photonics 10 796
Google Scholar
						[83] Bai P, Ding K, Wang G, Luo J, Zhang Z, Chan C T, Wu Y, Lai Y 2016 Phys. Rev. A 94 063841
Google Scholar
						[84] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
Google Scholar
						[85] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167
Google Scholar
						[86] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108
Google Scholar
						[87] Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S, Joannopoulos J D, Soljačić M 2015 Nature 525 354
Google Scholar
						[88] Luo L, Shao Y, Li J, Fan R, Peng R, Wang M, Luo J, Lai Y 2021 Opt. Express 29 14345
Google Scholar
						[89] Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387
Google Scholar
						[90] Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2020 Phys. Rev. Appl. 15 014009
[91] Assawaworrarit S, Fan S 2020 Nat. Electron. 3 273
Google Scholar
						[92] Wiersig J 2014 Phys. Rev. Lett. 112 203901
Google Scholar
						[93] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187
Google Scholar
						[94] Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192
Google Scholar
						[95] Wang S, Hou B, Lu W, Chen Y, Zhang Z Q, Chan C T 2019 Nat. Commun. 10 832
Google Scholar
						[96] Lai Y, Lu Y, Suh M, Yuan Z, Vahala K 2019 Nature 576 65
Google Scholar
						[97] Dong Z, Li Z, Yang F, Qiu C, Ho J S 2019 Nat. Electron. 2 335
Google Scholar
						[98] De Carlo M, De Leonardis F, Soref R A, Colatorti L, Passaro V M N 2022 Sensors-Basel 22 3977
Google Scholar
						[99] Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S 2014 Laser Photonics Rev. 8 495
Google Scholar
						[100] Ra'Di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001
Google Scholar
						[101] Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064
Google Scholar
						[102] Alaee R, Albooyeh M, Rockstuhl C 2017 J. Phys. D 50 503002
Google Scholar
						[103] Feng L, Huo P, Liang Y, Xu T 2019 Adv. Mater. 2019 1903787
[104] 王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 69 134101
Google Scholar
						Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101
Google Scholar
						[105] Lawrence M, Xu N, Zhang X, Cong L, Han J, Zhang W, Zhang S 2014 Phys. Rev. Lett. 113 093901
Google Scholar
						[106] Krešić I, Makris K G, Leonhardt U, Rotter S 2022 Phys. Rev. Lett. 128 183901
Google Scholar
						[107] Coppolaro M, Moccia M, Castaldi G, Engheta N, Galdi V 2020 Proc. Natl. Acad. Sci. U.S.A. 117 13921
Google Scholar
						[108] Correas-Serrano D, Alù A, Gomez-Diaz J S 2017 Phys. Rev. B 96 075436
Google Scholar
						[109] Moccia M, Castaldi G, Alù A, Galdi V 2020 ACS Photonics 7 2064
Google Scholar
						[110] Coppolaro M, Moccia M, Castaldi G, Alu A, Galdi V 2021 IEEE Trans. Microwave Theory Tech. 69 2060
Google Scholar
						[111] Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W 2008 Phys. Rev. Lett. 100 207402
Google Scholar
						[112] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104
Google Scholar
						[113] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342
Google Scholar
						[114] Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503
Google Scholar
						[115] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901
Google Scholar
						[116] Ye Y Q, Jin Y, He S 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 498
Google Scholar
						[117] Sun J, Liu L, Dong G, Zhou J 2011 Opt. Express 19 21155
Google Scholar
						[118] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D 43 225102
Google Scholar
						[119] Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104
Google Scholar
						[120] Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 044019
Google Scholar
						[121] Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett. 111 187402
Google Scholar
						[122] Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443
Google Scholar
						[123] Ding F, Jin Y, Li B, Cheng H, Mo L, He S 2014 Laser Photonics Rev. 8 946
Google Scholar
						[124] Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J 2016 Nat. Photonics 10 393
Google Scholar
						[125] Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J 2016 Sci. Adv. 2 e1501227
Google Scholar
						[126] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403
Google Scholar
						[127] Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994
Google Scholar
						[128] Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20
Google Scholar
						[129] Dotan H, Kfir O, Sharlin E, Blank O, Gross M, Dumchin I, Ankonina G, Rothschild A 2013 Nat. Mater. 12 158
Google Scholar
						[130] Luo J, Li S, Hou B, Lai Y 2014 Phys. Rev. B 90 165128
Google Scholar
						[131] Wang T, Luo J, Gao L, Xu P, Lai Y 2014 Appl. Phys. Lett. 104 211904
Google Scholar
						[132] Luo J, Lai Y 2019 Opt. Express 27 15800
Google Scholar
						[133] Tong W, Luo J, Sun Z, Lai Y 2020 Appl. Phys. Express 13 032001
Google Scholar
						[134] Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith D R, Liu Y 2021 Light Sci. Appl. 10 138
Google Scholar
						[135] Huang Y, Kaj K, Chen C, Yang Z, Ul Haque S R, Zhang Y, Zhao X, Averitt R D, Zhang X 2022 ACS Photonics 9 1150
Google Scholar
						[136] Potton R J 2004 Rep. Prog. Phys. 67 717
Google Scholar
						[137] Fan H, Chu H, Luo H, Lai Y, Gao L, Luo J 2022 Optica 9 1138
[138] Chong Y D, Ge L, Cao H, Stone A D 2010 Phys. Rev. Lett. 105 053901
Google Scholar
						[139] Zhang J, MacDonald K F, Zheludev N I 2012 Light Sci. Appl. 1 e18
Google Scholar
						[140] Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C 2015 Phys. Rev. B 91 220301(R
[141] Wang C, Shen X, Chu H, Luo J, Zhou X, Hou B, Peng R, Wang M, Lai Y 2022 Appl. Phys. Lett. 120 171703
Google Scholar
						[142] Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903
Google Scholar
						[143] Luo J, Liu B, Hang Z H, Lai Y 2018 Laser Photonics Rev. 2018 1800001
[144] Wang D, Luo J, Sun Z, Lai Y 2021 Opt. Express 29 5247
Google Scholar
						[145] Bai P, Luo J, Chu H, Lu W, Lai Y 2020 Opt. Lett. 45 6635
Google Scholar
						[146] Haus H A, Huang W 1991 Proc. IEEE 79 1505
Google Scholar
						[147] Doiron C F, Naik G V 2019 Adv. Mater. 31 1904154
Google Scholar
						[148] Yang F, Hwang A, Doiron C, Naik G V 2021 Opt. Mater. Express 11 2326
Google Scholar
						[149] Yang F, Prasad C S, Li W, Lach R, Everitt H O, Naik G V 2022 Nanophotonics 11 1159
Google Scholar
						[150] Liang Y, Gaimard Q, Klimov V, Uskov A, Benisty H, Ramdane A, Lupu A 2021 Phys. Rev. B 103 045419
Google Scholar
						[151] Yu J, Ma B, Ouyang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290
Google Scholar
						[152] Zhang X, Zhang Z, Wang Q, Zhu S, Liu H 2019 ACS Photonics 6 2671
Google Scholar
						[153] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243
Google Scholar
						[154] Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
Google Scholar
						[155] Kang M, Liu F, Li J 2013 Phys. Rev. A 87 053824
Google Scholar
						[156] Park S H, Lee S, Baek S, Ha T, Lee S, Min B, Zhang S, Lawrence M, Kim T 2020 Nanophotonics 9 1031
Google Scholar
						[157] Kang M, Chen J, Chong Y D 2016 Phys. Rev. A 94 033834
Google Scholar
						[158] Wang D, Li C, Zhang C, Kang M, Zhang X, Jin B, Tian Z, Li Y, Zhang S, Han J, Zhang W 2017 Appl. Phys. Lett. 110 021104
Google Scholar
						[159] Jin B, Tan W, Zhang C, Wu J, Chen J, Zhang S, Wu P 2018 Adv. Theory Simul. 1 1800070
Google Scholar
						[160] Li J, Fu J, Liao Q, Ke S 2019 J. Opt. Soc. Am. B:Opt. Phys. 36 2492
Google Scholar
						[161] Cao T, Cao Y, Fang L 2019 Nanoscale 11 15828
Google Scholar
						[162] Li S, Zhang X, Xu Q, Liu M, Kang M, Han J, Zhang W 2020 Opt. Express 28 20083
Google Scholar
						[163] Leung H M, Gao W, Zhang R, Zhao Q, Wang X, Chan C T, Li J, Tam W Y 2020 Opt. Express 28 503
Google Scholar
						[164] Xu J, Ouyang S, Luo L, Shen Y, Zou L, Tan Z, Deng X 2022 J. Opt. Soc. Am. B: Opt. Phys. 39 1847
Google Scholar
						[165] Baek S, Park S H, Oh D, Lee K, Lee S, Lim H, Ha T, Park H, Zhang S, Yang L, Min B, Kim T T 2022 arXiv: 2208.10675 [physics.optics]
[166] Dembowski C, Gräf H D, Harney H L, Heine A, Heiss W D, Rehfeld H, Richter A 2001 Phys. Rev. Lett. 86 787
Google Scholar
						[167] Gu X, Bai R, Zhang C, Jin X R, Zhang Y Q, Zhang S, Lee Y P 2017 Opt. Express 25 11778
Google Scholar
						[168] Sakhdari M, Farhat M, Chen P 2017 New J. Phys. 19 65002
Google Scholar
						[169] Chong Y D, Zhu W, Premaratne M 2014 Appl. Phys. Lett. 105 131103
Google Scholar
						[170] Chu H, Xiong X, Gao Y, Luo J, Jing H, Li C, Peng R, Wang M, Lai Y 2021 Sci. Adv. 7 eabj0935
Google Scholar
						[171] Ge L, Chong Y D, Stone A D 2012 Phys. Rev. A 85 023802
Google Scholar
						[172] Fleury R, Sounas D L, Alù A 2014 Phys. Rev. Lett. 113 023903
Google Scholar
						[173] Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018
[174] Sounas D L, Fleury R, Alù A 2015 Phys. Rev. Appl. 4 014005
Google Scholar
						[175] Ra'Di Y, Sounas D L, Alù A, Tretyakov S A 2016 Phys. Rev. B 93 235427
Google Scholar
						[176] Luo J, Li J, Lai Y 2018 Phys. Rev. X 8 031035
[177] Valagiannopoulos C A, Monticone F, Alù A 2016 J. Opt. 18 044028
Google Scholar
						[178] Savoia S, Valagiannopoulos C A, Monticone F, Castaldi G, Galdi V 2017 Phys. Rev. B 95 115114
Google Scholar
						[179] Kord A, Sounas D L, Alù A 2018 Phys. Rev. Appl. 10 054040
Google Scholar
						[180] Sakhdari M, Estakhri N M, Bagci H, Chen P 2018 Phys. Rev. Appl. 10 024030
Google Scholar
						[181] Nicolussi M, Riley J A, Pacheco-Peña V 2021 Appl. Phys. Lett. 119 263507
Google Scholar
						[182] Liberal I, Engheta N 2017 Nat. Photonics 11 149
Google Scholar
						[183] 罗杰, 赖耘 2019 物理 48 426
Luo J, Lai Y 2019 Physics 48 426
[184] Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903
Google Scholar
						[185] Luo J, Hang Z H, Chan C T, Lai Y 2015 Laser Photonics Rev. 9 523
Google Scholar
						[186] Liberal I, Mahmoud A M, Li Y, Edwards B, Engheta N 2017 Science 355 1058
Google Scholar
						[187] Thongrattanasiri S, Koppens F H L, García De Abajo F J 2012 Phys. Rev. Lett. 108 047401
Google Scholar
						[188] Farhat M, Yang M, Ye Z, Chen P 2020 ACS Photonics 7 2080
Google Scholar
						[189] Ye D, Chang K, Ran L, Xin H 2014 Nat. Commun. 5 5841
Google Scholar
						[190] Dong S, Hu G, Wang Q, Jia Y, Zhang Q, Cao G, Wang J, Chen S, Fan D, Jiang W, Li Y, Alù A, Qiu C 2020 ACS Photonics 7 3321
Google Scholar
						[191] Cao G, Zhao C, Dong S, Liu K, Zeng Y, Zhang Q, Zhang Y, Li Y, Zhu H 2022 Opt. Laser Technol. 156 108497
Google Scholar
						[192] Li M, Wang Z, Yin W, Li E, Chen H 2022 IEEE Trans. Antennas Propag. DOI: 10.1109/TAP.2022.3209282
[193] Kang M, Cui H, Li T, Chen J, Zhu W, Premaratne M 2014 Phys. Rev. A 89 065801
Google Scholar
						[194] Gao F, Yuan P, Sun Z, Deng J, Li Y, Jin G, Yan B 2022 Adv. Photonics Res. 3 2200019
Google Scholar
						[195] Gao F, Sun Z, Yuan P, Deng J, Jin G, Zhou J, Liu H, Yan B 2022 Appl. Phys. Lett. 121 091701
Google Scholar
						[196] Kang M, Zhang T, Zhao B, Sun L, Chen J 2021 Opt. Express 29 11582
Google Scholar
						[197] Xiao S, Gear J, Rotter S, Li J 2016 New J. Phys. 18 085004
Google Scholar
						[198] Park J, Ndao A, Cai W, Hsu L, Kodigala A, Lepetit T, Lo Y, Kanté B 2020 Nat. Phys. 16 462
Google Scholar
						[199] Chen P, Jung J 2016 Phys. Rev. Appl. 5 064018
Google Scholar
						[200] Wu T, Zhang W, Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R, Duan P, Li J, Wang B, Shi L, Zi J, Zhang X 2020 Phys. Rev. Lett. 124 083901
Google Scholar
						[201] Kang M, Zhu W, Rukhlenko I D 2017 Phys. Rev. A 96 063823
Google Scholar
						[202] Song Q, Odeh M, Zuniga-Perez J, Kante B, Genevet P 2021 Science 373 1133
Google Scholar
						[203] Kolkowski R, Kovaios S, Koenderink A F 2021 Phys. Rev. Res. 3 023185
Google Scholar
						[204] Zhao B, Sun L, Chen J 2020 Opt. Express 28 28896
Google Scholar
						[205] Falcone F, Lopetegi T, Laso M, Baena J, Bonache J, Beruete M, Marqués R, Martín F, Sorolla M 2004 Phys. Rev. Lett. 93 197401
Google Scholar
						[206] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[207] Luo J, Yang Y, Yao Z, Lu W, Hou B, Hang Z H, Chan C T, Lai Y 2016 Phys. Rev. Lett. 117 223901
Google Scholar
						[208] Ji W, Luo J, Lai Y 2019 Opt. Express 27 19463
Google Scholar
						[209] Bisharat D A J, Sievenpiper D F 2017 Phys. Rev. Lett. 119 106802
Google Scholar
						[210] Kong X, Bisharat D J, Xiao G, Sievenpiper D F 2019 Phys. Rev. A 99 033842
Google Scholar
						[211] Singh S, Davis R J, Bisharat D J, Lee J, Kandil S M, Wen E, Yang X, Zhou Y, Bandaru P R, Sievenpiper D F 2022 IEEE Antennas Propag. Mag. 64 51
Google Scholar
						[212] Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163
Google Scholar
						[213] Luo L, Luo J, Chu H, Lai Y 2021 Adv. Photonics Res. 2 2000081
Google Scholar
						[214] Nye N S, Halawany A E, Markos C, Khajavikhan M, Christodoulides D N 2020 Phys. Rev. Appl. 13 064005
Google Scholar
						[215] Deng Z L, Li F J, Li H, Li X, Alù A 2022 Laser Photonics Rev. 16 2100617
Google Scholar
						[216] Zhu X, Xu Y, Zou Y, Sun X, He C, Lu M, Liu X, Chen Y 2016 Appl. Phys. Lett. 109 111101
Google Scholar
						[217] Mortensen N A, Gonçalves P A D, Khajavikhan M, Christodoulides D N, Tserkezis C, Wolff C 2018 Optica 5 1342
Google Scholar
						 
Catalog
Metrics
- Abstract views: 14192
 - PDF Downloads: 536
 - Cited By: 0
 


					
		        
	        
 
												






							
DownLoad: 
				
							
							
							
							
							
							
							




