Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A tightly coupled dipole array used for radiation power improvement on finite radiation aperture

Tong San-Qiang Wang Bing-Zhong Wang Ren

Citation:

A tightly coupled dipole array used for radiation power improvement on finite radiation aperture

Tong San-Qiang, Wang Bing-Zhong, Wang Ren
cstr: 32037.14.aps.70.20210309
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Radiation power of an electromagnetic wave plays a decisive role in its transmission distance. Traditionally, the radiation power can be improved by expanding the radiation aperture size of the antenna array or increasing input power of the unit cell. However, the radiation aperture size is always restricted by assembly space. The input power improvement of the unit cell is always limited by the signal source. It is difficult to improve radiation power on a finite radiation aperture. However, the radiation power on a finite radiation aperture is related closely to the number of antenna elements and the radiation efficiency of the antenna array. It is useful to arrange more elements and improve radiation efficiency of the antenna array to improve the radiation power on a finite radiation aperture. Wideband wide-angle scanning phased array is able to make full use of a finite radiation aperture. The wide-angle scanning properties make it possible for the radiated power to cover a wide area. In this paper, a compact wideband wide-angle scanning tightly coupled dipole array (TCDA) is proposed. A high permittivity substrate and compact wideband balun are used for miniaturizing the antenna array. The period of the unit cell is only 0.144λhigh × 0.144λhigh (λhigh is the wavelength at the highest operation frequency in free space). Parameters of the balun are optimized to improve impedance matching between the balun and the antenna array. Two bilateral frequency selective surfaces (FSSs) are used to replace traditional dielectric superstrate to improve the impedance matching between the antenna array and free space. A low-loss dielectric substrate is used to reduce dielectric loss of the antenna array. In these ways, the radiation efficiency is greatly improved. The simulation results show that the proposed antenna array operates at 1.7–5.4 GHz (3.2:1) while scanning up to 65° in the E plane, 45° in the H plane and 60° in the D plane with following a rigorous impedance matching criterion (active VSWR < 2). A 16 × 16 prototype array is fabricated and measured. Good agreement is achieved between the simulation results and the measurement results. Compared with the designs in the literature, the proposed antenna array has an excellent performance in radiation power on a finite radiation aperture.
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61731005, 61901086), the Postdoctoral Innovation Talents Support Program, China (Grant No. BX20180057), the Applied Foundational Research Project of Sichuan Province, China (Grant No. 2021YJ0100), and the Fundamental Research Fund for the Central Universities, China (Grant No. ZYGX2019J101)
    [1]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [2]

    Chen Y, Zhang Y P 2005 IEEE Antennas Wirel. Propag. Lett. 53 3089Google Scholar

    [3]

    Choe H, Lim S 2014 IEEE Trans. Antennas Propag. 62 5497Google Scholar

    [4]

    Li J F, Chu Q X, Huang T W 2012 IEEE Trans. Antennas Propag. 60 482Google Scholar

    [5]

    陈昭福, 黄华, 常安碧, 许州, 何琥, 雷禄容, 胡进光, 袁欢, 刘振帮 2014 63 238402Google Scholar

    Chen Z F, Huang H, Chang A B, Xu Z, He H, Lei L R, Hu J J, Yuan H, Liu Z B 2014 Acta Phys. Sin. 63 238402Google Scholar

    [6]

    Munk B A 2003 Finite Antenna Arrays and FSS (USA: Wiley-IEEE Press) pp181−213

    [7]

    Yetisir E, Ghalichechian N, Volakis J L 2016 IEEE Trans. Antennas Propag. 64 4256Google Scholar

    [8]

    Hu C H, Wang B Z, Gao G F, Wang R, Xiao S Q, Ding X 2020 IEEE Antennas Wirel. Propag. Lett. 20 63

    [9]

    Zhang Y H, Yang S W, Xiao S W, Chen Y K, Qu S W, Hu J 2019 IEEE Antennas Wirel. Propag. Lett. 18 378Google Scholar

    [10]

    Lim T B, Zhu L 2008 Proceedings of the IEEE MTT-S International Microwave Workshop Series on Art Miniaturizing RF Microwave and Passive Components Chengdu, China, December 14−15, 2008 p153

    [11]

    Zhu L, Bu H, Wu K 2000 IEEE MTT-S International Microwave Symposium Digest Boston, USA, June 11−16, 2000 p315

    [12]

    Magill E G, Wheeler H A 1966 IEEE Trans. Antennas Propag. 14 49Google Scholar

    [13]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104Google Scholar

    [14]

    Hood A Z, Karacolak T, Topsakal E 2008 IEEE Antennas Wirel. Propag. Lett. 7 656Google Scholar

    [15]

    Cavallo D, Syed W H, Neto A 2017 IEEE Trans. Antennas Propag. 65 1788Google Scholar

    [16]

    Hu C H, Wang B Z, Wang R, Xiao S Q, Ding X 2020 IEEE Trans. Antennas Propag. 68 2788Google Scholar

    [17]

    Moulder W F, Sertel K, Volakis J L 2013 IEEE Trans. Antennas Propag. 61 5802Google Scholar

    [18]

    Bah A O, Qin P Y, Ziolkowski RW, Guo Y J, Bird T S 2019 IEEE Trans. Antennas Propag. 67 2332Google Scholar

    [19]

    Jiang Z G, Xiao S Q, Yao Z X, Wang B Z 2020 IEEE Trans. Antennas Propag. 68 7348Google Scholar

    [20]

    Syed W H, Cavallo D, Shivamurthy H T, Neto A 2015 IEEE Trans. Antennas Propag. 64 543

    [21]

    Xia R L, Qu S W, Yang S W, Chen Y K 2018 IEEE Trans. Antennas Propag. 66 1767Google Scholar

  • 图 1  天线单元结构 (a) 前视图 (红色馈线下方的地板被移除); (b) 后视图

    Figure 1.  Unit Cell of the TCDA: (a) Front view of the unit cell (the ground of the red parts is etched); (b) back view of the unit cell.

    图 2  红色馈线下方地板未移除和地板移除时巴伦的反射系数

    Figure 2.  Reflection coefficients of the balun with and without the etched ground of the red feeding parts.

    图 3  无限大阵列有加载和无加载匹配层在H面45°扫描时, 天线单元有源驻波比

    Figure 3.  Active VSWRs of the unit cell at 45° scanning in the H plane in infinite array simulation with and without frequency selective surfaces.

    图 4  无限大阵列交叉极化水平 (a) 在不同面不同角度扫描时的交叉极化比; (b) 在3 GHz边射时, 天线口径面电场分布

    Figure 4.  Cross polarization level in infinite array simulation: (a) Cross polarization ratio at different angles scanning in different planes; (b) electric field on radiation aperture at 3 GHz.

    图 5  无限大阵列在边射、E面65°、D面60°和H面45°扫描时, 天线阵的辐射效率

    Figure 5.  Radiation efficiency of the proposed antenna array at broadside, 65° scanning in the E plane, 45° scanning in the H plane and 60° scanning in the D plane.

    图 6  无限大阵列在边射、E面65°、H面45°和D面60°扫描时, 天线单元有源驻波比

    Figure 6.  Active VSWRs of the unit cell in infinite array simulation at broadside, 65° scanning in the E plane, 45° scanning in the H plane and 60° scanning in the D plane.

    图 7  天线阵加工和测试 (a) 实际加工的16 × 16阵列; (b) 测试装置和测试环境

    Figure 7.  Antenna array fabrication and measurement: (a) Fabricated prototype of 16 × 16 antenna array; (b) measurement setup and environment.

    图 8  测试方案 (a) E面; (b) H面; (c) D

    Figure 8.  Measurement scheme: (a) E plane; (b) H plane; (c) D plane.

    图 9  E面0°, 45°, 65°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz

    Figure 9.  Normalized radiation patterns at 0°, 45° and 65° scanning in the E plane: (a) 3 GHz; (b) 5 GHz.

    图 10  H面0°, 45°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz

    Figure 10.  Normalized radiation patterns at 0° and 45° scanning in the H plane: (a) 3 GHz; (b) 5 GHz.

    图 11  D面0°, 45°, 60°扫描时的归一化方向图 (a) 3 GHz; (b) 5 GHz

    Figure 11.  Normalized radiation patterns at 0°, 45° and 60° scanning in the D plane: (a) 3 GHz; (b) 5 GHz.

    图 12  天线阵边射时, 测试结果和仿真结果对比

    Figure 12.  Comparisons between measured and simulated results at broadside radiation.

    表 1  按相同辐射口径换算, 不同文献中天线阵的辐射功率对比

    Table 1.  Comparisons of radiated power of antenna arrays in literatures on the same conversion size radiation aperture.

    参考文献工作频率/GHz单元周期/λhigh × λhigh扫描角度有源驻波比单元个数辐射效率辐射功率/W
    [16]0.75—3.85 GHz
    (5.1∶1)
    0.36 × 0.36E-70°
    H-60°
    < 377195%732
    [17]0.68—5.00 GHz
    (7.35∶1)
    0.45 × 0.45E-45°
    H-45°
    < 349370%345
    [18]0.80—4.38 GHz
    (5.5∶1)
    0.35 × 0.35E-70°
    H-55°
    < 381687%710
    [19]3.13—11.63 GHz
    (3.7∶1)
    0.36 × 0.36E-75°
    H-60°
    < 377184%647
    [20]6.5—14.5 GHz
    (2.23∶1)
    0.45 × 0.45E-50°
    H-50°
    < 249395%468
    [21]7.8—13.5 GHz
    (1.7∶1)
    0.45 × 0.39E-70°
    H-70°
    < 256990%512
    本文设计1.7—5.4 GHz
    (3.2∶1)
    0.144 × 0.144E-65°
    H-45°
    < 2482284%4050
    DownLoad: CSV
    Baidu
  • [1]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [2]

    Chen Y, Zhang Y P 2005 IEEE Antennas Wirel. Propag. Lett. 53 3089Google Scholar

    [3]

    Choe H, Lim S 2014 IEEE Trans. Antennas Propag. 62 5497Google Scholar

    [4]

    Li J F, Chu Q X, Huang T W 2012 IEEE Trans. Antennas Propag. 60 482Google Scholar

    [5]

    陈昭福, 黄华, 常安碧, 许州, 何琥, 雷禄容, 胡进光, 袁欢, 刘振帮 2014 63 238402Google Scholar

    Chen Z F, Huang H, Chang A B, Xu Z, He H, Lei L R, Hu J J, Yuan H, Liu Z B 2014 Acta Phys. Sin. 63 238402Google Scholar

    [6]

    Munk B A 2003 Finite Antenna Arrays and FSS (USA: Wiley-IEEE Press) pp181−213

    [7]

    Yetisir E, Ghalichechian N, Volakis J L 2016 IEEE Trans. Antennas Propag. 64 4256Google Scholar

    [8]

    Hu C H, Wang B Z, Gao G F, Wang R, Xiao S Q, Ding X 2020 IEEE Antennas Wirel. Propag. Lett. 20 63

    [9]

    Zhang Y H, Yang S W, Xiao S W, Chen Y K, Qu S W, Hu J 2019 IEEE Antennas Wirel. Propag. Lett. 18 378Google Scholar

    [10]

    Lim T B, Zhu L 2008 Proceedings of the IEEE MTT-S International Microwave Workshop Series on Art Miniaturizing RF Microwave and Passive Components Chengdu, China, December 14−15, 2008 p153

    [11]

    Zhu L, Bu H, Wu K 2000 IEEE MTT-S International Microwave Symposium Digest Boston, USA, June 11−16, 2000 p315

    [12]

    Magill E G, Wheeler H A 1966 IEEE Trans. Antennas Propag. 14 49Google Scholar

    [13]

    Smith D R, Schultz S 2002 Phys. Rev. B 65 195104Google Scholar

    [14]

    Hood A Z, Karacolak T, Topsakal E 2008 IEEE Antennas Wirel. Propag. Lett. 7 656Google Scholar

    [15]

    Cavallo D, Syed W H, Neto A 2017 IEEE Trans. Antennas Propag. 65 1788Google Scholar

    [16]

    Hu C H, Wang B Z, Wang R, Xiao S Q, Ding X 2020 IEEE Trans. Antennas Propag. 68 2788Google Scholar

    [17]

    Moulder W F, Sertel K, Volakis J L 2013 IEEE Trans. Antennas Propag. 61 5802Google Scholar

    [18]

    Bah A O, Qin P Y, Ziolkowski RW, Guo Y J, Bird T S 2019 IEEE Trans. Antennas Propag. 67 2332Google Scholar

    [19]

    Jiang Z G, Xiao S Q, Yao Z X, Wang B Z 2020 IEEE Trans. Antennas Propag. 68 7348Google Scholar

    [20]

    Syed W H, Cavallo D, Shivamurthy H T, Neto A 2015 IEEE Trans. Antennas Propag. 64 543

    [21]

    Xia R L, Qu S W, Yang S W, Chen Y K 2018 IEEE Trans. Antennas Propag. 66 1767Google Scholar

Metrics
  • Abstract views:  9179
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  09 February 2021
  • Accepted Date:  21 April 2021
  • Available Online:  28 September 2021
  • Published Online:  20 October 2021
  • /

    返回文章
    返回
    Baidu
    map