Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface

Gao Xi Tang Li-Guang

Citation:

Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface

Gao Xi, Tang Li-Guang
cstr: 32037.14.aps.70.20200975
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A broadband and high-efficieny bi-layer metasurface is proposed in this paper. The unit cell of the metasurface is formed by symmetrically etching two cross-type metal patches on both sides of a dielectric plate. Furthermore, the two metal patches have a displacement of half a period along the y-axis. By employing the displacement, the transmission bandwidth of the bi-layer metasurface is significantly expanded. In order to obtain a physical insight into bandwidth broadening, a π-type equivalent circuit that presents the electromagnetic coupling between within the bi-layer metasurfaces is successfully extracted to investigate the influence of electromagnetic coupling on transmission performance. The results show that by shifting the metal patches along the y-axis by half a period, the coupling impedance (Z12 or Z21) of bi-layer metasurface can be significantly modified, which further changes the electromagnetic coupling of the bi-layer metasurface. Correspondingly, the impedances Zp and Zs in the π-type circuit are changed to approximately meet the resonant condition of circuit in broadband, resulting in the bandwidth expansion of the proposed device. By using Pancharatnam-Berry phase theory, we redesign the proposed metasurface unit cell into a broadband orbital angular momentum generator. The simulation and measurement results verify that the bi-layer metasurface can convert a left-hand circularly polarized wave into a right-hand circularly polarized wave carrying orbital angular momentum in a frequency range between 11 GHz and 12.8 GHz, demonstrating the performance of device.
      Corresponding author: Gao Xi, gao_xi76@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61761010) and the Natural Science Foundation of Guangxi, China (Grant No. 2018GXNSFAA281193).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [3]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [4]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [5]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [6]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [7]

    Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [8]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [9]

    Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar

    [10]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [11]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [12]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [13]

    Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar

    [14]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [15]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar

    [16]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar

    [17]

    Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [18]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [19]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar

    [20]

    Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar

    [21]

    Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar

    [22]

    Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [23]

    Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar

    [24]

    Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar

  • 图 1  超表面单元的物理模型 (a)上层结构俯视图; (b)下层结构仰视图; (c)侧视图

    Figure 1.  Schematic of metasurface unit cell: (a) Top view; (b) bottom view; (c) side view of the unit cell.

    图 2  超表面对线极化波的响应(txxtyyx极化波和y极化波的同极化传输系数的振幅, φxxφyy为同极化传输系数的相位)

    Figure 2.  Amplitude and phase of co-polarized transmission coefficient, where txx and tyy are amplitudes of co-polarized transmission coefficients for x- and y-polarized incident waves, and φxx and φyy correspond to the phase of txx and tyy.

    图 3  超表面对左旋圆极化波的响应(tL-LtL-R为同极化和交叉极化传输系数, rL-LrL-R为同极化和交叉极化反射系数)

    Figure 3.  Response for left-hand circularly polarized incident wave, where tL-L and tL-R are co- and cross-polarized transmission coefficients, and rL-L and rL-R are co- and cross-polarized reflective coefficients.

    图 4  (a) y极化波的透射系数; (b) x极化波的透射系数

    Figure 4.  (a) Transmission coefficient for y-polarized wave; (b) transmission coefficient for x-polarized wave.

    图 5  (a) 等效电路模型; (b) 由等效电路及CST仿真得到的y极化波的S参数

    Figure 5.  (a) Equivalent circuit model; (b) transmission coefficients for y-polarized incident wave obtained from equivalent circuit (EC) modal and CST simulation.

    图 6  等效电路模型中的阻抗元素 (a) Ly = 0 mm; (b) Ly = 7.5 mm

    Figure 6.  Impedance elements of equivalent circuit for different Ly: (a) Ly = 0 mm; (b) Ly = 7.5 mm.

    图 7  双层超表面的π型等效电路 (a) 精细结构; (b)总结构

    Figure 7.  π-type equivalent circuit for bi-layer metasurface: (a) Fine structure; (b) overall framework.

    图 8  不同Ly值的情况下, ZsZp随频率的变化关系 (a) Ly = 0 mm; (b) Ly = 7.5 mm.

    Figure 8.  Zs and Zp function as frequency for different Ly: (a) Ly = 0 mm; (b) Ly = 7.5 mm.

    图 9  产生OAM波束的超表面 (a) 整体结构排布; (b) 区域分布示意图

    Figure 9.  Metasurface for generating OAM wave beam: (a) The whole structure; (b) phase distribution.

    图 10  z = 100 mm处, 仿真得到的xoy平面内的电场及相位分布 (a), (b) 11 GHz处电场的振幅和相位; (c), (d) 11.9 GHz处电场的振幅和相位; (e), (f) 12.8 GHz处电场的振幅和相位

    Figure 10.  Simulated amplitude and phase distributions of electromagnetic wave in xoy plane located at z = 100 mm: (a), (b) At 11 GHz; (c), (d) at 11 GHz; (e), (f) at 12.8 GHz.

    图 11  加工的实物图 (a) 正面; (b) 背面

    Figure 11.  Photos of fabricated samples: (a) Top view; (b) bottom view.

    图 12  z = 100 mm处, 测试得到的xoy平面内的电场及相位分布 (a), (b) 11 GHz处电场的振幅和相位; (c), (d) 11.9 GHz处电场的振幅和相位; (e), (f) 12.8 GHz处电场的振幅和相位

    Figure 12.  Measured amplitude and phase distributions of electromagnetic wave in xoy plane located at z = 100 mm: (a), (b) At 11 GHz; (c), (d) at 11 GHz; (e), (f) at 12.8 GHz.

    表 1  与其他传输型超表面的性能对比(${\lambda _0}$为中心频率对应的波长)

    Table 1.  Comparison with other transmissive metasurface.

    参考
    工作
    设计
    原理
    单元的最大
    透射系数/%
    相对带宽(透射
    系数 > 0.8)/%
    厚度/${\lambda _0}$
    [19]P-B
    相位
    9130.05
    [22]9250.05
    [23]9150.05
    [24]9260.07
    本工作9517.9 (> 0.8)
    15.3 (> 0.9)
    0.08
    DownLoad: CSV
    Baidu
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar

    [3]

    Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar

    [4]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar

    [5]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [6]

    Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar

    [7]

    Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [8]

    Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [9]

    Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar

    [10]

    Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [11]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [12]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [13]

    Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar

    [14]

    Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar

    [15]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar

    [16]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar

    [17]

    Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar

    [18]

    Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar

    [19]

    Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar

    [20]

    Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar

    [21]

    Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar

    [22]

    Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [23]

    Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar

    [24]

    Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar

Metrics
  • Abstract views:  9079
  • PDF Downloads:  232
  • Cited By: 0
Publishing process
  • Received Date:  24 June 2020
  • Accepted Date:  21 August 2020
  • Available Online:  19 January 2021
  • Published Online:  05 February 2021
  • /

    返回文章
    返回
    Baidu
    map