Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene

Liu Gui-Li Yang Zhong-Hua

Citation:

First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene

Liu Gui-Li, Yang Zhong-Hua
cstr: 32037.14.aps.67.20172491
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the first-principles method of density functional theory, a systematic research is conducted on the electron mechanism of the effect of deformation, electric field action and combined action on the electrical properties of graphene. The research results show that the energy gap and density of states of graphene are both 0 at the Fermi level, indicating semi-metallic character, which implies that the calculation model and the parameter setting are reasonable in this paper. After some deformation actions, such as shear, stretch, torsion and bending deformation on the graphene, it is found that shear and torsion exert an obvious effect on opening the energy gap of graphene, but the effects of tensile and bending deformation on the energy gap of graphene are negligible. Therefore, shear deformation and torsion deformation are a preferred alternative to controlling the energy gap of graphene. By adding the electric field to the graphene in different directions, it is found that the , and direction electric fields which are parallel to the plane of graphene exert a strong effect on opening the energy gap of graphene, but the effect of direction electric field which is perpendicular to the plane of graphene is weak. Especially, the direction electric field has the strongest effect on opening the energy gap of the graphene because the positive value of the population of graphene C–C atoms in the direction is relatively large and bond energy is high while the negative value is small and the antibond energy is low. In order to investigate the influence of electric field strength on energy gap of graphene, the electric field strength is increased linearly from 0.1 eV/Å/e to 0.5 eV/Å/e. It can be observed that the energy gap of graphene increases in turn, and shows a linear growth. Under the action of 0.1 eV/Å/e electric field strength, shear deformation, stretch deformation, torsion deformation and bending deformation take place on the grapheme. It is found that under the combined action of deformation and electric field, the electric field improves the effect of deformation on the energy gap, but the effect is not so good asunder the superposition of two fields.
      Corresponding author: Yang Zhong-Hua, 331808017@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50671069)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich W, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N 2011 Appl. Phys. Lett. 99 102504

    [5]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P T 2010 Appl. Phys. Lett. 97 193305

    [8]

    Sun L F, Fang C, Liang T X 2013 Chin. Phys. Lett. 30 047201

    [9]

    Zhou S, Liu G, Fan D 2017 Phys. B: Condens. Matter 506 156

    [10]

    Prezzi D, Varsano D, Ruini A, Marini A, Molinari E 2008 Phys. Rev. B 77 041404

    [11]

    Liao W H 2010 Ph. D. Dissertation (Hunan: Hunan Normal University) (in Chinese) [廖文虎 2010 博士学位论文 (湖南: 湖南师范大学)]

    [12]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 58 1931]

    [13]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [14]

    Yu J, Zhang X X, Ji J S, Huang D, Xi W 2015 Chin. J. Nonferrous Met. 25 3452

    [15]

    Park J S, Choi H J 2015 Phys. Rev. B: Condens. Matter Mat. Phys. 92 045402

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135 188

    [19]

    Shanno D F 1970 Math. Comput. 24 647

    [20]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 59 3408]

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich W, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N 2011 Appl. Phys. Lett. 99 102504

    [5]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P T 2010 Appl. Phys. Lett. 97 193305

    [8]

    Sun L F, Fang C, Liang T X 2013 Chin. Phys. Lett. 30 047201

    [9]

    Zhou S, Liu G, Fan D 2017 Phys. B: Condens. Matter 506 156

    [10]

    Prezzi D, Varsano D, Ruini A, Marini A, Molinari E 2008 Phys. Rev. B 77 041404

    [11]

    Liao W H 2010 Ph. D. Dissertation (Hunan: Hunan Normal University) (in Chinese) [廖文虎 2010 博士学位论文 (湖南: 湖南师范大学)]

    [12]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 58 1931]

    [13]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [14]

    Yu J, Zhang X X, Ji J S, Huang D, Xi W 2015 Chin. J. Nonferrous Met. 25 3452

    [15]

    Park J S, Choi H J 2015 Phys. Rev. B: Condens. Matter Mat. Phys. 92 045402

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135 188

    [19]

    Shanno D F 1970 Math. Comput. 24 647

    [20]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 59 3408]

Metrics
  • Abstract views:  9930
  • PDF Downloads:  398
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2017
  • Accepted Date:  19 January 2018
  • Published Online:  05 April 2018
  • /

    返回文章
    返回
    Baidu
    map