-
自旋电子学技术的核心挑战在于有效产生和调控自旋极化电流,而基于磁性材料的传统器件易受外部干扰。Andreev反射谱作为测量材料自旋极化率和超导能隙的关键手段,其传统理论模型假设界面散射各向同性,忽略了实际界面中普遍存在的自旋各向异性散射效应,这可能导致对材料本征性质的误判。本研究旨在建立一套完整的各向异性自旋散射理论框架,系统探究界面散射各向异性对Andreev反射谱的调控机制,以解决自旋电子器件设计中的精确表征问题。方法上,基于Blonder-Tinkham-Klapwijk模型和Chen-Tesanovic-Chien模型,引入自旋相关的散射参数,发展了能够描述从正常金属到半金属的各种界面体系的理论模型,并通过数值计算和三维图像分析,详细研究了正常金属、正极化磁性金属和负极化材料在自旋各向异性界面上的反射谱行为。主要结果揭示,对于自旋极化率为零的正常金属,界面各向异性散射可可通过传输自旋极化机制产生高自旋极化电流,为基于非磁性材料的抗干扰自旋电子器件提供了新思路;在磁性材料中,界面各向异性可有效调控电流极化率,解释了界面原子对磁电阻效应的增强机制;此外,通过对比正负极化率条件下的反射谱差异,提出了一种确定材料自旋极化率符号的新方法。结论表明,该理论不仅完善了Andreev反射谱的理论基础,还为量子材料表征和自旋电子器件设计提供了重要指导,特别是在非磁性自旋源开发和界面工程方面具有应用潜力。The advancement of spintronics technology hinges on the efficient generation and control of spin-polarized currents, yet conventional approaches relying on magnetic materials are prone to external magnetic interference, limiting their practical applications. Andreev reflection spectroscopy has emerged as a powerful tool for probing material-specific properties such as spin polarization (P) and superconducting gaps (∆), but its theoretical foundations often rest on simplified models that assume isotropic interface scattering. This assumption neglects the ubiquitous spin-dependent anisotropic scattering observed in real-world interfaces, which can lead to significant misinterpretations of intrinsic material characteristics. To address this gap, our study aims to develop a comprehensive theoretical framework that incorporates anisotropic spin scattering effects, enabling a systematic investigation of how interface anisotropy modulates Andreev reflection spectra. This work seeks to resolve precision issues in the characterization of spin-polarized materials, particularly for emerging quantum systems like topological insulators, where accurate measurement of spin polarization is crucial but challenging.
Methodologically, we build upon the foundational Blonder-Tinkham-Klapwijk (BTK) model and its extension by Chen-Tesanovic-Chien (CTC) by introducing spin-dependent scattering parameters Z↑ and Z↓ to describe the distinct interface scattering strengths for spin-up and spin-down electrons. This allows us to construct a unified theoretical model applicable to a wide range of interface systems, from normal metals (P= 0) to half-metals (P= ±1). We employ detailed numerical calculations and three-dimensional image analysis to simulate the differential conductance spectra under varying conditions of spin polarization and interface anisotropy. Specifically, the model accounts for the probability amplitudes of Andreev reflection and normal reflection by solving the Bogoliubov-de Gennes equations with generalized boundary conditions, and the current formulae are derived by integrating over energy-dependent transmission probabilities, incorporating a judgment function to handle dominant spin channels realistically.
Our key results reveal several important physical insights. For non-magnetic metals (P=0), interface anisotropic scattering (e.g., Z↑ ≠ Z↓) can induce highly spin-polarized currents through a transmission spin polarization mechanism, as demonstrated by the suppression of Andreev reflection and the reduction in normalized differential conductance within the superconducting gap (e.g., decreasing from 2 to 0 as Z↑ increases while Z↓ is fixed). This effect is sensitive even to small values of Z (around 0.25–0.5), highlighting the importance of precise interface engineering. For magnetic materials with positive spin polarization (P>0), such as those with P=0.25, anisotropy at the interface non-linearly modulates the current polarization; for instance, when Z↓ is fixed at 0.5, increasing initially enhances Andreev reflection due to balanced spin transmission but suppresses it beyond a critical point, illustrating the tunability of polarization rates. Conversely, for negatively polarized materials (P<0), the spectra exhibit distinct features—such as the absence of peaks under certain conditions—enabling a novel method to determine the sign of P by comparing differential conductance behaviors. Experimental validation using pure Co films shows close agreement with our model, confirming its accuracy and the minor anisotropy in typical magnetic interfaces.
In conclusion, this theoretical framework not only refines the understanding of Andreev reflection spectroscopy by accounting for anisotropic scattering but also provides practical tools for characterizing quantum materials and designing spintronic devices. It offers new pathways for developing interference-resistant spin sources based on non-magnetic materials and optimizes interface engineering in magnetoresistance devices. Future work will focus on experimental extensions to low-dimensional systems and algorithmic improvements for parameter analysis, further bridging theory and application in quantum information science.-
Keywords:
- Spintronics /
- Spin polarization /
- Andreev reflection /
- Spin scattering
-
[1] Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Dittmann N, Splettstoesser J, Giazotto F 2016 New J. Phys. 18 083019
[3] Rigato F, Piano S, Foerster M, Giubileo F, Cucolo A M, Fontcuberta J 2010 Phys. Rev. B:Condens. Matter Mater. Phys. 81 174415
[4] Okada S, Nakada K, Kuwabara K, Daigoku K, Kawai T 2006 Phys. Rev. B:Condens. Matter Mater. Phys. 74 121412
[5] He Q L, Hughes T L, Armitage N P, Tokura Y, Wang K L 2022 Nat. Mater. 21 15
[6] Mellnik A R, Lee J, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E-A, Samarth N 2014 Nature 511 449
[7] Li Z Y, Song S M, Wang W X, Gong J H, Tong Y, Dai M J, Lin S S, Yang T L, Sun H 2023 Nanotechnology 34 025702
[8] Bai C, Yang Y, Jiang Y, Yang H-X 2019 Phys. Lett. A 383 1174
[9] Li Z, Du W, Liao L, Sun Z, Zhang Z, Wen T, Zhang Z, Tao W, Chen T 2025 Aggregate 6 e70098
[10] Blonder G, Tinkham m M, Klapwijk T 1982 Phys. Rev. B 25 4515
[11] Strijkers G, Ji Y, Yang F, Chien C, Byers J 2001 Phys. Rev. B 63 104510
[12] Chen T, Tesanovic Z, Chien C 2012 Phys. Rev. Lett. 109 146602
[13] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
[14] Luo J, Xu Z, Jin Z, Wang M, Cai X, Chen J 2024 ACS Appl. Mater. Interfaces 16 31677
[15] Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273
[16] Wang Y, Yang Y, Li S, Xie Y, Xiao Z, Zhang M, Ju W 2025 Information Sciences 703 121946
[17] Woods G, Soulen Jr R, Mazin I, Nadgorny B, Osofsky M, Sanders J, Srikanth H, Egelhoff W, Datla R 2004 Phys. Rev. B:Condens. Matter Mater. Phys. 70 054416
[18] Wilken F B, Brouwer P W 2012 Phys. Rev. B:Condens. Matter Mater. Phys. 85 134531
[19] Ring P, Schuck P 2004 The nuclear many-body problem (Berlin: Springer Science & Business Media)
[20] Tinkham M 2004 Introduction to superconductivity (New York: Courier Corporation)
[21] Karel J, Bouma D, Martinez J, Zhang Y, Gifford J, Zhang J, Zhao G, Kim D, Li B, Huang Z 2018 Phys. Rev. Mater. 2 064411
[22] Wang L, Chen T, Chien C L, Leighton C 2006 Appl. Phys. Lett. 88 232509
[23] Cooper L N 1956 Phys. Rev. 104 1189
[24] Jiang L N, Zhang Y B, Dong S L 2015 Acta Phys. Sin. 64 147104.(in Chinese)[姜丽娜, 张玉滨, 董顺乐 2015 64 147104]
计量
- 文章访问数: 53
- PDF下载量: 2
- 被引次数: 0








下载: