搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

手性磁子的物理机制与研究进展

林万兴 邓瀚宸 王保田 姚道新

引用本文:
Citation:

手性磁子的物理机制与研究进展

林万兴, 邓瀚宸, 王保田, 姚道新

Chiral Magnons: Mechanisms and Research Progress

LIN Wanxing, DENG Hanchen, WANG Baotian, YAO Daoxin
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 手性磁子是磁有序体系中一种独特的自旋集体激发,其色散在动量反演下不再对称,自旋波沿相反方向传播时呈现不同的本征频率和寿命,因此在自旋信息传输、非互易器件以及热自旋转换等方面具有重要的应用潜力。 近年来,交错磁性的提出与迅速发展,拓展了手性磁子的物理起源与研究框架, 使其成为凝聚态物理的研究前沿。本文系统梳理手性磁子的物理机制及研究进展,揭示其从对称性破缺至多体非厄米调控的完整体系,并探讨室温器件化路径。通过文献综述与理论分析相结合,归纳手性磁子的物理起源、对称判据、典型材料验证、拓扑边缘态、输运补偿效应,以及多体相干与非厄米效应。展望高通量手性磁子材料筛选、跨平台联用测量及几何相位工程, 以期推动手性磁子向低功耗自旋逻辑与量子路由的实用化发展,为磁子学研究开辟创新路径。本综述可为手性磁子的物理机制解析、新材料制备与实验观测,以及相关电子器件设计提供参考。
    Chiral magnons are collective spin excitations whose dispersions break momentum inversion symmetry, $\omega(\boldsymbol{k}) \neq \omega(-\boldsymbol{k})$, leading to intrinsically nonreciprocal spin-wave propagation. This built-in directionality offers new opportunities for spin information transfer, thermal-spin interconversion, and low-dissipation nonreciprocal microwave devices, in a manner complementary to but distinct from topological magnonics. This review develops a unified framework for chiral magnons, covering symmetry-breaking mechanisms, material realizations, transport responses and many-body non-Hermitian dynamics, and evaluates routes toward room-temperature, device-relevant platforms. The discussion is based on symmetry analysis, model Hamiltonians and spin-wave theory, in combination with first-principles calculations and recent spectroscopic and transport measurements. The microscopic origins of chiral magnons are organized into three interrelated aspects, spin-orbit coupling (SOC)-driven Dzyaloshinskii-Moriya interactions (DMI) in non-centrosymmetric magnets and interfaces, altermagnetism in the weak SOC regime without DMI, and the spin space group (SSG) framework. On this basis, representative materials such as CrSb, α-MnTe, RuO2 and MnF2 are compared in terms of energy scales, coherence, momentum anisotropy and experimental visibility, clarifying how magnon splittings and lifetimes are reflected in direction-dependent spin Seebeck, spin Nernst and thermal Hall signals. The review further summarizes bulk-gap and Berry-curvature induced chiral edge states, enhancement of nonreciprocity via chiral spin pumping and cavity-magnon hybrids, and non-Hermitian features arising from multiparticle damping and gain-loss competition. Furthermore, remaining challenges, such as the stability of physical properties at room temperature, quantitative calibration of spectral and transport properties, as well as many-body competition also outlined. Finally, the possible strategies based on SSG-guided materials screening, multi-modal metrology and geometry phase engineering toward efficient spin logic, THz isolators and quantum routing based on chiral magnons also proposed.
  • [1]

    Van Kranendonk J, Van Vleck J H 1958 Reviews of Modern Physics 30 1

    [2]

    Liyuan Li L C, Ronghua Liu,, Du Y 2020 Chin. Phys. B 29 117102

    [3]

    Chisnell R, Helton J S, Freedman D E, Singh D K, Bewley R I, Nocera D G, Lee Y S 2015 PHYSICAL REVIEW LETTERS 115 147201

    [4]

    Li F-Y, Li Y-D, Kim Y B, Balents L, Yu Y, Chen G 2016 Nature Communications 7 12691

    [5]

    Li B, Kovalev A A 2018 Physical Review B 97 174413

    [6]

    Hu Z, Fu L, Liu L 2022 Physical Review Letters 128 217201

    [7]

    Hua C, Xu D-H 2025 Chinese Physics B 34 037301

    [8]

    Fu H, Zhang L, Mrad R, Xie Y, Chen Y 2025 Chinese Physics B 34 067506

    [9]

    Wang Z Y, Li Z X, Yuan H Y, Zhang Z Z, Cao Y S, Yan P 2023 Acta Phys. Sin. 72 057503 (in Chinese) [王振宇,李志雄,袁怀洋,张知之,曹云姗,严鹏 2023 72 057503]

    [10]

    Yu T, Luo Z, Bauer G E W 2023 Physics Reports 1009 1

    [11]

    Zhang Y, Qiu L, Chen J, Wu S, Wang H, Malik I A, Cai M, Wu M, Gao P, Hua C, Yu W, Xiao J, Jiang Y, Yu H, Shen K, Zhang J 2025 Nature Materials 24 69

    [12]

    Smejkal L, Sinova J, Jungwirth T 2022 PHYSICAL REVIEW X 12 031042

    [13]

    Smejkal L, Sinova J, Jungwirth T 2022 PHYSICAL REVIEW X 12 040501

    [14]

    Song C, Bai H, Zhou Z, Han L, Reichlova H, Dil J H, Liu J, Chen X, Pan F 2025 Nature Reviews Materials 10 473

    [15]

    Bai H, Song C 2025 Chin. Sci. Bull. 70 4156 (in Chinese) [白桦,宋成 2025 科 学通报 70 4156]

    [16]

    DAI J K, HAN L, ZHOU Z Y, WANG Y Y, PAN F, SONG C 2026 Sci. Sin.- Phys. Mech. Astron. 56 227503 (in Chinese) [戴健坤,韩磊,周致远,王钰言 ,潘峰,宋成 中国科学:物理学 力学 天文学 56 227503]

    [17]

    Zhang Y-F, Ni X-S, Chen K, Cao K 2025 Physical Review B 111 174451

    [18]

    Liu Z Y, Ozeki M, Asai S, Itoh S, Masuda T 2024 PHYSICAL REVIEW LETTERS 133 156702

    [19]

    Alaei M, Sobieszczyk P, Ptok A, Rezaei N, Oganov A R, Qaiumzadeh A 2025 Physical Review B 111 104416

    [20]

    McClarty P A, Gukasov A, Rau J G 2025 PHYSICAL REVIEW B 111 L060405

    [21]

    Morano V C, Maesen Z, Nikitin S E, Lass J, Mazzone D G, Zaharko O 2025 PHYSICAL REVIEW LETTERS 134 226702

    [22]

    Smejkal L, Marmodoro A, Ahn K H, González-Hernández R, Turek I, Mankovsky S, Ebert H, D'Souza S W, Sipr O, Sinova J, Jungwirth T 2023 PHYSICAL REVIEW LETTERS 131 256703

    [23]

    Wu K, Dong J T, Zhu M, Zheng F X, Zhang J 2025 CHINESE PHYSICS LETTERS 42 070702

    [24]

    Li X, Liu P-F, Zhao E, Zhang Z, Guidi T, Le M D, Avdeev M, Ikeda K, Otomo T, Kofu M, Nakajima K, Chen J, He L, Ren Y, Wang X-L, Wang B-T, Ren Z, Zhao H, Wang F 2020 Nature Communications 11 942

    [25]

    Liu P-F, Li X, Li J, Zhu J, Tong Z, Kofu M, Nirei M, Xu J, Yin W, Wang F, Liang T, Xie L, Zhang Y, Singh D J, Ma J, Lin H, Zhang J, He J, Wang B-T 2024 National Science Review 11 nwae216

    [26]

    Wei J, Chen H, Chen Y, Chen Y, Chi Y, Deng C, Dong H, Dong L, Fang S, Feng J, Fu S, He L, He W, Heng Y, Huang K, Jia X, Kang W, Kong X, Li J, Liang T, Lin G, Liu Z, Ouyang H, Qin Q, Qu H, Shi C, Sun H, Tang J, Tao J, Wang C, Wang F, Wang D, Wang Q, Wang S, Wei T, Xi J, Xu T, Xu Z, Yin W, Yin X, Zhang J, Zhang Z, Zhang Z, Zhou M, Zhu T 2009 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600 10

    [27]

    Wang H C, Madami M, Chen J L, Sheng L T, Zhao M K, Zhang Y, He W Q, Guo C Y, Jia H, Liu S, Song Q M, Han X F, Yu D P, Gubbiotti G, Yu H M 2021 ACS NANO 15 9076

    [28]

    Cahaya A B 2025 JOURNAL OF PHYSICS D-APPLIED PHYSICS 58 345002

    [29]

    Cui J, Boström E V, Ozerov M, Wu F L, Jiang Q N, Chu J H, Li C C, Liu F C, Xu X D, Rubio A, Zhang Q 2023 NATURE COMMUNICATIONS 14 3396

    [30]

    Nambu Y, Barker J, Okino Y, Kikkawa T, Shiomi Y, Enderle M, Weber T, Winn B, Graves-Brook M, Tranquada J M, Ziman T, Fujita M, Bauer G E W, Saitoh E, Kakurai K 2020 Physical Review Letters 125 027201

    [31]

    Luo C, Datta T, Huang Z, Yao D-X 2015 Physical Review B 92 035109

    [32]

    Xiong Z, Datta T, Stiwinter K, Yao D-X 2017 Physical Review B 96 144436

    [33]

    Huang Z, Mongan S, Datta T, Yao D-X 2017 Journal of Physics: Condensed Matter 29 505802

    [34]

    Xiong Z, Datta T, Yao D-X 2020 npj Quantum Materials 5 78

    [35]

    Qi K-Y, Jin S, Datta T, Yao D-X 2025 Physical Review B 112 134438

    [36]

    Li J, Jin S, Datta T, Yao D-X 2023 Physical Review B 107 184402

    [37]

    Chang Y-Y, Cheng J-Q, Shao H, Yao D-X, Wu H-Q 2024 Frontiers of Physics 19 63202

    [38]

    Li J, Datta T, Yao D-X 2021 Physical Review Research 3 023248

    [39]

    Zhang M-H, Yao D-X 2023 Physical Review B 107 024408

    [40]

    Zhang M-H, Yao D-X 2023 Physical Review B 108 144407

    [41]

    Guo X, Zhang M-H, Yao D-X 2025 2025 CHINESE PHYSICS LETTERS 42 120703

    [42]

    Zhang M H, Xiao L, Yao D X 2025 arXiv 2407.18379

    [43]

    Zhang J, Zhang M H, Li P, Liu Z, Tao Y, Wang H, Yao D X, Guo D, Zhong D 2024 arXiv 2410.18960

    [44]

    Shan C, Jin S, Datta T, Yao D-X 2021 Physical Review B 103 024417

    [45]

    Wu M, Gong S-S, Yao D-X, Wu H-Q 2022 Physical Review B 106 125129

    [46]

    Zhang Y-F, Ni X-S, Datta T, Wang M, Yao D-X, Cao K 2022 Physical Review B 106 184422

    [47]

    He L-Y, Ye X-M, Yao D-X 2025 Frontiers of Physics 20 054501

    [48]

    Li Y, Lo T-H, Lim J, Pearson J E, Divan R, Zhang W, Welp U, Kwok W-K, Hoffmann A, Novosad V 2023 Applied Physics Letters 123 022406

    [49]

    Wang W, Shen K 2025 Physical Review B 111 094413

    [50]

    Li Y, Wang W, Liu C, Chen A, Zheng D, Yang T, Tang M, Fang B, Ma Y, Shen K, Manchon A, Qiu Z, Zhang X 2025 Advanced Materials 37 2416190

    [51]

    Lu Z, Miranda I P, Streib S, Pereiro M, Sjöqvist E, Eriksson O, Bergman A, Thonig D, Delin A 2023 Physical Review B 108 014433

    [52]

    Ye X, Xia K, Bauer G E W, Yu T 2024 Physical Review Applied 22 L011001

    [53]

    Hou Y-B, Ren Y-L, Xie J-K, Ma S-L, Li F-L, Li P-B 2025 Europhysics Letters 149 45002

    [54]

    Biniskos N, dos Santos Dias M, Agrestini S, Sviták D, Zhou K-J, Pospíšil J, Čermák P 2025 Nature Communications 16 9311

    [55]

    Kawano M, Onose Y, Hotta C 2019 COMMUNICATIONS PHYSICS 2 27

    [56]

    Chen X B, Liu Y T, Liu P F, Yu Y T, Ren J, Li J Y, Zhang A, Liu Q H 2025 NATURE 640 349

    [57]

    Yuan L D, Wang Z, Luo J W, Zunger A 2021 PHYSICAL REVIEW MATERIALS 5 014409

    [58]

    Jin Z, Zeng Z, Liu J, Gong T, Su Y, Chang K, Yan P 2025 arXiv 2507.21717

    [59]

    Beida W, Şaşıoğlu E, Friedrich C, Bihlmayer G, Mokrousov Y, Blügel S 2025 npj Quantum Materials 10 97

    [60]

    Tas M 2025 arXiv 2510.03759

    [61]

    Sun Q, Guo J, Wang D, Abernathy D L, Tian W, Li C 2025 Physical Review Letters 135 186703

    [62]

    Faure Q, Bounoua D, Balédent V, Gukasov A, Garlea V O, Ribeiro A, Rau J G, Petit S, McClarty P 2025 arXiv 2509.07087

    [63]

    Kravchuk V P, Yershov K V, Facio J I, Guo Y, Janson O, Gomonay O, Sinova J, van den Brink J 2025 Physical Review B 112 144421

    [64]

    Yu T, Blanter Y M, Bauer G E W 2019 PHYSICAL REVIEW LETTERS 123 247202

    [65]

    Yu T, Wang H C, Sentef M A, Yu H M, Bauer G E W 2020 PHYSICAL REVIEW B 102 054429

    [66]

    Yu T, Zhang X, Sharma S, Blanter Y M, Bauer G E W 2020 PHYSICAL REVIEW B 101 094414

    [67]

    Zhang X F, Galda A, Han X, Jin D F, Vinokur V M 2020 PHYSICAL REVIEW APPLIED 13 044039

    [68]

    Prajapati D, Banerjee C 2024 Physical Review B 110 224410

    [69]

    Pirro P, Vasyuchka V I, Serga A A, Hillebrands B 2021 Nature Reviews Materials 6 1114

    [70]

    Sala G, Stone M B, Rai B K, May A F, Laurell P, Garlea V O, Butch N P, Lumsden M D, Ehlers G, Pokharel G, Podlesnyak A, Mandrus D, Parker D S, Okamoto S, Halász G B, Christianson A D 2021 Nature Communications 12 171

    [71]

    Brehm V, Sobieszczyk P, Qaiumzadeh A 2025 PHYSICAL REVIEW B 111 144415

    [72]

    McClarty P A, Dong X Y, Gohlke M, Rau J G, Pollmann F, Moessner R, Penc K 2018 PHYSICAL REVIEW B 98 060404

    [73]

    Jin H K, Kadow W, Knap M, Knolle J 2024 NPJ QUANTUM MATERIALS 9 65

    [74]

    Mella J D, Torres L, Troncoso R E 2024 PHYSICAL REVIEW B 110 104433

    [75]

    Kim S K, Tserkovnyak Y 2017 PHYSICAL REVIEW LETTERS 119 077204

    [76]

    Li Z X, Wang C, Cao Y S, Yan P 2018 PHYSICAL REVIEW B 98 180407

    [77]

    Kong L-Y 2018 Acta Physica Sinica 67 137506

    [78]

    Owerre S A, Mellado P, Baskaran G 2019 EPL 126 27002

    [79]

    Martinez-Berumen I, Coish W A, Pereg-Barnea T 2025 arXiv 2508.20049

    [80]

    Wang S, Wang W-W, Fan J, Zhou X, Li X-P, Wang L 2025 Nano Letters 25 14618

    [81]

    Owerre S A 2017 SCIENTIFIC REPORTS 7 6931

    [82]

    Shi H C, Tang B, Liu C F. 2024 Acta Phys. Sin. 73 137501 (in Chinese) [施洪潮 ,唐炳,刘超飞 2024 73 137501]

    [83]

    Cui Q, Zeng B, Cui P, Yu T, Yang H 2023 Physical Review B 108 L180401

    [84]

    Yao D P, Yokoyama T 2025 PHYSICAL REVIEW B 111 L060404

    [85]

    Wang L, Shen L, Bai H, Zhou H-A, Shen K, Jiang W 2024 Physical Review Letters 133 166705

    [86]

    Liu Y, Xu Z, Liu L, Zhang K, Meng Y, Sun Y, Gao P, Zhao H-W, Niu Q, Li J 2022 Nature Communications 13 1264

    [87]

    Kepaptsoglou D, Castellanos-Reyes J Á, Kerrigan A, Alves do Nascimento J, Zeiger P M, El hajraoui K, Idrobo J C, Mendis B G, Bergman A, Lazarov V K, Rusz J, Ramasse Q M 2025 Nature 644 83

    [88]

    Bayrakci S P, Keller T, Habicht K, Keimer B 2006 SCIENCE 312 1926

    [89]

    Holbein S, Steffens P, Biesenkamp S, Ollivier J, Komarek A C, Baum M, Braden M 2023 Physical Review B 108 104404

    [90]

    Kim D-Y, Berrai I, Suraj T S, Roussigné Y, Yang S, Belmeguenai M, Hu F, Shi G, Tan H R, Huang J, Soumyanarayanan A, Kim K-W, Mourad Cherif S, Yang H 2024 Physical Review Letters 133 156704

    [91]

    Shen H, Zhen B, Fu L 2018 Physical Review Letters 120 146402

    [92]

    Bergholtz E J, Budich J C, Kunst F K 2021 Reviews of Modern Physics 93 015005

    [93]

    Meng C, An Z 2025 Nature Physics 21 1516

    [94]

    Hu Y-M, Song F, Wang Z 2021 Acta Physica Sinica 70 230307

    [95]

    Yu T, Zou J, Zeng B, Rao J W, Xia K 2024 Physics Reports 1062 1

    [96]

    Frostad T, Kristoffersen A L, Brehm V, Troncoso R E, Brataas A, Qaiumzadeh A 2025 PHYSICAL REVIEW B 111 184402

    [97]

    Yu W C, Yu T, Bauer G E W 2020 PHYSICAL REVIEW B 102 064416

    [98]

    Yang G, Guan S Y, Han X, Wang T, Zhang S, Wang H F 2025 ADVANCED QUANTUM TECHNOLOGIES 8 2400702

    [99]

    Huang K W, Wang X, Qiu Q Y, Xiong H 2024 OPTICS LETTERS 49 758

    [100]

    Sui C, Yuan S, Gao D, Yu D, Jia C 2025 Physical Review B 112 174407

    [101]

    Jin Z, Gong T, Liu J, Yang H, Zeng Z, Cao Y, Yan P 2025 Physical Review Letters 135 126702

    [102]

    Sødequist J, Olsen T 2024 Applied Physics Letters 124

  • [1] 王奕璇, 刘一谋, 吴金辉. 受飞行里德堡自旋控制的光学涡旋非互易传播.  , doi: 10.7498/aps.75.20251375
    [2] 付天琦, 申伯洋, 马欣然, 黄仁忠, 范黎明, 艾保全, 高天附, 郑志刚. 非互易耦合布朗粒子的定向输运.  , doi: 10.7498/aps.74.20250689
    [3] 陈志坚, 赵恺欣, 王辰笑, 魏纯可, 姚碧霂. 光诱导磁子态调控的宽频带非互易传输.  , doi: 10.7498/aps.74.20241666
    [4] 周文, 彭淑平, 邓淑玲, 伍丹, 范志强, 张小姣. 非对称双氢钝化锯齿型SiC纳米带复合功能自旋器件设计与输运.  , doi: 10.7498/aps.74.20250553
    [5] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件.  , doi: 10.7498/aps.73.20240462
    [6] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运.  , doi: 10.7498/aps.73.20240174
    [7] 张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚. 铁磁电极单层二硫化钼纳米带量子结构中的自旋开关效应和巨磁阻.  , doi: 10.7498/aps.72.20230483
    [8] 田颖异, 王拴虎, 罗殿柄, 魏向洋, 金克新. 溶液旋涂法制备BixY3–xFe5O12薄膜的自旋输运特性.  , doi: 10.7498/aps.72.20221183
    [9] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究.  , doi: 10.7498/aps.72.20221973
    [10] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究.  , doi: 10.7498/aps.72.20230267
    [11] 金江明, 谢添伟, 程昊, 肖岳鹏, D.Michael McFarland, 卢奂采. Duffing振子型结构声系统中声能量非互易传递的建模和实验研究.  , doi: 10.7498/aps.71.20212181
    [12] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响.  , doi: 10.7498/aps.71.20220277
    [13] 李佳锦, 刘乾, 伍丹, 邓小清, 张振华, 范志强. 蒽二噻吩分子连接铁磁锯齿边碳化硅纳米带的巨幅度自旋整流.  , doi: 10.7498/aps.71.20212193
    [14] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控.  , doi: 10.7498/aps.69.20201028
    [15] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运.  , doi: 10.7498/aps.66.198503
    [16] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , doi: 10.7498/aps.65.068503
    [17] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运.  , doi: 10.7498/aps.63.227304
    [18] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运.  , doi: 10.7498/aps.63.017303
    [19] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用.  , doi: 10.7498/aps.59.597
    [20] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究.  , doi: 10.7498/aps.58.3437
计量
  • 文章访问数:  103
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-31

/

返回文章
返回
Baidu
map