搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EIT-AT分裂的133Cs原子里德堡态跃迁频率精密测量

梁冰瑜 边武 邓文均 罗怡婷

引用本文:
Citation:

基于EIT-AT分裂的133Cs原子里德堡态跃迁频率精密测量

梁冰瑜, 边武, 邓文均, 罗怡婷

Precision Measurement of the Transition Frequency in Rydberg States of 133Cs Atoms Based on EIT-AT Splitting

LIANG Bingyu, BIAN Wu, DENG Wenjun, LUO Yiting
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 为精确测量铯原子里德堡态能级结构,本文基于电磁诱导透明(electromagnetically induced transparency,EIT)和Autler-Townes(AT)分裂效应,通过双光子相干激发结合微波场耦合,将里德堡态之间跃迁频率测量转化为AT分裂光谱间距的标定,在铯原子蒸气室体系中测量了三种典型里德堡跃迁频率: n2D5/2→(n+1)2P3/2n=39-53),n2D3/2→(n+1) 2P1/2n=39-47)与n2S1/2n2P1/2n=59-62)。实验测得的跃迁频率值与开源Python库Alkali Rydberg Calculator ( ARC)理论计算值之间的偏差均小于850 kHz,其中平均偏差为449 kHz。该测量结果不仅验证了相关理论模型的可靠性,而且为铯原子里德堡态的精密光谱测量提供了另一种重要方法,对完善里德堡态原子结构理论和发展基于蒸汽室的里德堡原子量子技术具有重要价值。
    The precision determination of Rydberg states transition frequency is important for quantum sensing and computation. In this study, we prepare 133Cs Rydberg states of nD5/2, nD3/2, and nS1/2 by using a cascaded twophoton excitation scheme with counter-propagating 852 nm probe light and 509 nm coupling light in a cesium vapor cell. Furthermore, by introducing a microwave field to couple adjacent Rydberg states, we obtained the transition spectra between the Rydberg states based on electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting effects. Frequency calibration of the sampled data points collected by the oscilloscope was achieved using either the fine-structure splitting interval between nD5/2 and nD3/2 Rydberg states for n2D5/2→(n+1) 2P3/2 and n2D3/2 → (n+1) 2P1/2 transitions, or using a second EIT signal generated by an acousto-optic modulator frequency-shifted 852 nm laser for n2S1/2n2P1/2 transitions. To reduce systematic errors, we employed a microwave frequency detuning method, calibrating the AT splitting intervals at different frequencies, and measured the resonant frequencies of three typical cesium Rydberg state transitions: n2D5/2→(n+1) 2P3/2 (n=39-53), n2D3/2→(n+1) 2P1/2 (n=39-47), and n2S1/2n2P1/2 (n=59-62). Characterized by experimental simplicity, high precision, and broad applicability, this method is suitable for high-precision measurements of alkali metal Rydberg transition frequencies. Deviations between the experimentally measured transition frequencies and the theoretical values from the open-source Python library ARC (Alkali Rydberg Calculator) were all less than 850 kHz, with an average deviation of 449 kHz. Through the analysis of the influences of various physical effects such as Zeeman effect on the measurement of Rydberg state transition frequencies, the obtained measurement uncertainty is 410 kHz. This small deviation demonstrates the exceptional capability and reliability of the EIT-AT splitting method in overcoming environmental interference and achieving MHz-level precision measurements of Rydberg state transition frequencies. The results provide important data for Rydberg atom precision spectroscopy.
  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) Chap1

    [2]

    Baugh J F, Ciocca M, Edmonds D A, Nellesen P T, Burkhardt CE, Leventhal J J 1996 Phys. Rev. A. 54 4641

    [3]

    Fabre C, Haroche S 1975 Optics Communications 15 254

    [4]

    Yerokhin V A, Buhmann S Y, Fritzsche S, Surzhykov A 2016 Phys. Rev. A. 94 032503

    [5]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831

    [6]

    Jiao Y C, Han X X, Yang Z W, Li j k, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A. 94 023832

    [7]

    Zhao J M, Zhang H, Feng Z G, Zhu X B, Zhang L J, Li C Y, Jia S T 2011 Journal of the Physical Society of Japan 80 034303

    [8]

    Zhang H, Ma Y, Liao K Y, Yang W G, Liu Z K, Ding D S, Yan H, Li W H, Zhang L J 2024 Science Bulletin 69 1515

    [9]

    Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [10]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [11]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565.

    [12]

    Li X, Hou J Y, Wang J C, Wang G W, He X D, Zhou F, Wang Y B, Liu M, Wang J, Xu P, Zhan M S 2025 Nature Communications 16 9728

    [13]

    Shi S, Xu B, Zhang K, Ye G S, Xiang D S, Liu Y B, Wang J Z, Su D Q, Li L 2022 Nature Communications 13 4454

    [14]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [15]

    Benhelm J, Kirchmair G, Roos C F, Blatt R 2008 Nature Physics 4 463

    [16]

    Shao X Q, Su S L, Li L, Nath R, Wu J H, Li W B 2024 Appl. Phys. Rev. 11 031320

    [17]

    Deiglmayr J, Herburger H, Saßmannshausen H, Jansen P, Schmutz H, Merkt F 2016 Phys. Rev. A 93 013424

    [18]

    Shen P R, Booth D, Liu C, Beattie S, Marceau C, Shaffer J P, Pawlak M, Sadeghpour H R 2024 Phys. Rev. Lett. 133 233005

    [19]

    Shen P R, Pawlak M, Booth D, Nickerson K, Miladi H, Sadeghpour H R, Shaffer J 2025 Phys. Rev. A 112 022814

    [20]

    Song R, Bai J X, Li Z H, Jiao Y C, Zhao J M, Jia S T 2024 Optics Express 32 25717

    [21]

    Bohaichuk S M, Ripka F, Venu V, Christaller F, Liu C, Schmidt M, Kübler H, Shaffer J P 2023 Phys. Rev. A. 20 L061004

    [22]

    Glick J, Anderson B E, Nunley T N, Bingham J, Lin J R, Meyer D H, Kumpf P, DeYoung A, Li J, Smith L, Andersen T 2025 arXiv:2506.04504v1 [physics.atom-ph]

    [23]

    Zhao J H, Zhang H, Yang W G, Zhang L J, Jing M Y 2022 Journal of Quantum Optics 28 303 (in Chinese) [赵婧华, 张好, 杨文广, 张临杰, 景明勇 2022 量子光学学报 28 303]

    [24]

    Bai S Y 2015 M.S. Thesis (Changchun: Northeast Normal University) (in Chinese) [白思音 2015 硕士学位论文 (长春:东北师范大学)]

    [25]

    Meng Y M, Xiang J F, Xu B, Li B. Wan J Y, Ren W, Deng S M D, Zhang D, Lv D S 2023 Chinese Journal of Lasers 50 2301013 (in Chinese) [孟一鸣, 项静峰, 徐斌, 李彪, 万金银, 任伟, 邓思敏达, 张迪, 吕德胜 2023 中国激光 50 2301013]

    [26]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [27]

    Abi-Salloum T Y 2010 Phys. Rev. A. 81 053836

    [28]

    Bian W, Zheng S Y, Li Z Q, Guo Z Y, Ma H K, Qiu S Y, Liao K Y, Zhang X D, Yan H 2023 Laser & Optoelectronics Progress 60 1106022 (in Chinese) [边武,郑顺元,李仲启,郭钟毓,马恒宽,仇思源,廖开宇,张新定,颜辉 2023 激光与光电子学进展 60 1106022]

    [29]

    Xu B, Ye G S, Chang Y, Shi T, Li L 2024 Rep. Prog. Phys. 87 110502

    [30]

    Zhang Z M 2015 Quantum Optics (Beijing: China Science Publishing) p47 (in Chinese) [张智明 2015 量子光学 (北京:科学出版社) 第47页]

    [31]

    Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Physics Communications 220 319

    [32]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B. 31 97

    [33]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101

    [34]

    Bao S X, Zhang H,Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A. 94 043822

    [35]

    Steck D A http://steck.us/alkalidata [2019-11-21]

    [36]

    Saßmannshausen H, Merkt F, Deiglmayr J 2013 Phys. Rev. A. 87 032519

    [37]

    Allegrini M, Arimondo E, Orozco L A 2022 J. Phys. Chem. Ref. Data 51 043102

    [38]

    Holloway C L, Prajapati N, Sherman J A, Rüfenacht A, Artusio-Glimpse A B, Simons M T, Robinson A K, La Mantia D S, Norrgard E B 2022 AVS Quantum Sci 4 034401

    [39]

    Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A 2011 Phys. Rev. A. 84 053409

    [40]

    Cardman R, Raithel G 2022 Phys. Rev. A. 106 052810

    [41]

    Song R, Bai J X, Li Z H, Jiao Y C, Jia S T, Zhao J M 2024 Phys. Rev. A. 110 042815

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析.  , doi: 10.7498/aps.74.20241362
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , doi: 10.7498/aps.73.20240397
    [3] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , doi: 10.7498/aps.70.20210102
    [4] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , doi: 10.7498/aps.67.20181168
    [5] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , doi: 10.7498/aps.66.103201
    [6] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , doi: 10.7498/aps.64.064202
    [7] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量.  , doi: 10.7498/aps.64.160702
    [8] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态.  , doi: 10.7498/aps.63.144203
    [9] 龙精明, 王华胜. 氯化氢共振多光子电离光谱:F1Δ2态的光谱微扰分析.  , doi: 10.7498/aps.62.163302
    [10] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究.  , doi: 10.7498/aps.62.174207
    [11] 刘智, 刁文婷, 王杰英, 梁强兵, 杨保东, 何军, 张天才, 王军民. 铯原子气室中相干布居俘获的参数依赖关系研究.  , doi: 10.7498/aps.61.233201
    [12] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算.  , doi: 10.7498/aps.61.163202
    [13] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明.  , doi: 10.7498/aps.60.024204
    [14] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收.  , doi: 10.7498/aps.59.7008
    [15] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , doi: 10.7498/aps.57.4921
    [16] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究.  , doi: 10.7498/aps.56.6373
    [17] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , doi: 10.7498/aps.55.5206
    [18] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收.  , doi: 10.7498/aps.55.4145
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , doi: 10.7498/aps.54.5104
    [20] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , doi: 10.7498/aps.53.1023
计量
  • 文章访问数:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-04

/

返回文章
返回
Baidu
map