搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

III-V族半导体二维量子结构中载流子的自旋弛豫

王一帆 张仕雄 陈帅宇 陈子杰 杨学林 许福军 王新强 葛惟昆 沈波 唐宁

引用本文:
Citation:

III-V族半导体二维量子结构中载流子的自旋弛豫

王一帆, 张仕雄, 陈帅宇, 陈子杰, 杨学林, 许福军, 王新强, 葛惟昆, 沈波, 唐宁

Spin Relaxation of Carriers in Two-Dimensional Quantum Structures of III-V Semiconductors

WANG Yifan, ZHANG Shixiong, CHEN Shuaiyu, CHEN Zijie, YANG Xuelin, XU Fujun, WANG Xinqiang, GE Weikun, SHEN Bo, TANG Ning
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • III-V族半导体二维量子结构材料制备工艺成熟,自旋弛豫易于被调控,是研制自旋电子器件的优选材料体系.本文综述了在闪锌矿GaAs基与纤锌矿GaN基二维量子结构材料体系中,利用时间分辨磁光光谱与磁输运测量研究手段,通过结构设计、电场与应力调控自旋轨道耦合及自旋弛豫的研究进展.利用上述调控手段优化结构参数,实现抑制自旋弛豫的SU (2)对称性构型,为高性能自旋电子器件设计制造提供科学依据.
    With mature fabrication technologies and tunable spin relaxation, IIIV semiconductor two-dimensional quantum structures serve as a preferred material system for developing spintronic devices. This paper reviews the progress in manipulating spin-orbit coupling and spin relaxation in two-dimensional electron gas and two-dimensional hole gas systems via structural design, electric fields, and strain. By combining time-resolved magneto-optical spectroscopy with magnetotransport measurements, we analyze the synergistic modulation of Rashba and Dresselhaus effects to optimize the spin lifetime and highlight the distinct physical pathways for constructing long-lived SU(2) spin states in zinc-blende GaAs and wurtzite GaN heterostructures. For zinc-blende GaAs quantum wells, we discuss the realization of the persistent spin helix state by balancing the Rashba and Dresselhaus effects through structural design and electric field control. In contrast, for wurtzite GaN systems, we reveal that the Rashba and Dresselhaus effects inherently share the same symmetry form, allowing for the direct cancellation of effective magnetic fields to achieve a robust SU(2) electronic state. Ultimately, this comprehensive physical picture provides a scientific basis for material selection and architecture design in future high-performance spintronic devices.
  • [1]

    Mansfield E, Barnes B, Kline R, Vladar A, Obeng Y, Davydov A 2023 International Roadmap for Devices and Systems (IRDSTM) 2023 Edition: Metrology Gaithersburg, MD, USA, December 8, 2023 p1

    [2]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [3]

    Fert A 2008 Angew. Chem. Int. Ed. 47 5956

    [4]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [5]

    Ioannou M 2023 Emerg. Minds J for Stu. Res. 1 1

    [6]

    Sinova J, Žutić I 2012 Nat. Mater. 11 368

    [7]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [8]

    Šmejkal L, Mokrousov Y, Yan B H, MacDonald A H 2018 Nat. Phys. 14 242

    [9]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231

    [10]

    Linder J, Robinson J W A 2015 Nat. Phys. 11 307

    [11]

    Thompson S E, Parthasarathy S 2006 Mater. Today 9 20

    [12]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [13]

    Koo H C, Kwon J H, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515

    [14]

    Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J, Jungwirth T 2010 Science 330 1801

    [15]

    Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787

    [16]

    Holub M, Shin J, Saha D, Bhattacharya P 2007 Phys. Rev. Lett. 98 146603

    [17]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [18]

    Walser M P, Reichl C, Wegscheider W, Salis G 2012 Nat. Phys. 8 757

    [19]

    Bel’kov V V, Olbrich P, Tarasenko S A, Schuh D, Wegscheider W, Korn T, Schüller C, Weiss D, Prettl W, Ganichev S D 2008 Phys. Rev. Lett. 100 176806

    [20]

    Kunihashi Y, Sanada H, Gotoh H, Onomitsu K, Kohda M, Nitta J, Sogawa T 2016 Nat. Commun. 7 10722

    [21]

    Kunihashi Y, Sanada H, Tanaka Y, Gotoh H, Onomitsu K, Nakagawara K, Kohda M, Nitta J, Sogawa T 2017 Phys. Rev. Lett. 119 187703

    [22]

    Zhang S X, Tang N, Sun Z H, Chen S Y, Yang X L, Ge W K, Shen B 2025 Phys. Rev. B 111 195301

    [23]

    Chen S Y, Tang N, Sun Z H, Fan H R, Guo F Q, Wang Y F, Zhang S X, Yang X L, Lin X, Ge W K, Shen B 2025 Phys. Rev. B 112 L161301

    [24]

    Karimov O Z, John G H, Harley R T, Lau W H, Flatté M E, Henini M, Airey R 2003 Phys. Rev. Lett. 91 246601

    [25]

    Iba S, Koh S, Kawaguchi H 2010 Appl. Phys. Lett. 97 202102

    [26]

    Balocchi A, Duong Q H, Renucci P, Liu B L, Fontaine C, Amand T, Lagarde D, Marie X 2011 Phys. Rev. Lett. 107 136604

    [27]

    Hernández-Mínguez A, Biermann K, Hey R, Santos P V 2012 Phys. Rev. Lett. 109 266602

    [28]

    Wang G, Liu B L, Balocchi A, Renucci P, Zhu C R, Amand T, Fontaine C, Marie X 2013 Nat. Commun. 4 2372

    [29]

    Jiang L, Wu M W 2005 Phys. Rev. B 72 033311

    [30]

    English D J, Lagoudakis P G, Harley R T, Eldridge P S, Hübner J, Oestreich M 2011 Phys. Rev. B 84 155323

    [31]

    Liu X C, Tang N, Zhang S X, Zhang X Y, Guan H M, Zhang Y F, Qian X, Ji Y, Ge W K, Shen B 2020 Adv. Sci.7 1903400

    [32]

    Schliemann J, Egues J C, Loss D 2003 Phys. Rev. Lett. 90 146801

    [33]

    Chen Y H, Cheng C Y, Chen S Y, Rodriguez J S D, Liao H T, Watanabe K, Taniguchi T, Chen C W, Sankar R, Chou F C, Chiu H C, Wang W H 2019 npj 2D Mater. Appl. 3 49

    [34]

    Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78

    [35]

    Bihlmayer G, Rader O, Winkler R 2015 New J. Phys. 17 050202

    [36]

    Dyakonov M I 2017 Spin Physics in Semiconductors (Cham: Springer International Publishing) pp39—66

    [37]

    Wang W T, Wu C L, Tsay S F, Gau M H, Lo I, Kao H F, Jang D J, Chiang J C, Lee M E, Chang Y C, Chen C N, Hsueh H C 2007 Appl. Phys. Lett. 91 082110

    [38]

    Fu J Y, Wu M W 2008 J. Appl. Phys.104 093712

    [39]

    Ye H Q, Wang G, Liu B L, Shi Z W, Wang W X, Fontaine C, Balocchi A, Amand T, Lagarde D, Renucci P, Marie X 2012 Appl. Phys. Lett. 101 032104

    [40]

    Zawadzki W, Pfeffer P 2003 Semicond. Sci. Technol. 19 R1

    [41]

    Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S, Awschalom D D 2009 Nature 458 610

    [42]

    Gridnev V N 2002 JETP Lett. 76 502

    [43]

    Bernevig B A, Orenstein J, Zhang S C 2006 Phys. Rev. Lett. 97 236601

    [44]

    Anghel S, Singh A, Passmann F, Iwata H, Moore J N, Yusa G, Li X Q, Betz M 2016 Phys. Rev. B 94 035303

    [45]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [46]

    Zawadzki W, Pfeffer P 2003 Semicond. Sci. Technol. 19 R1

    [47]

    Jancu J M, Scholz R, de Andrada e Silva E A, La Rocca G C 2005 Phys. Rev. B 72 193201

    [48]

    Winkler R 2003 Spin—Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin, Heidelberg: Springer Berlin Heidelberg) pp79—84

    [49]

    Fu J Y, Penteado P H, Candido D R, Ferreira G J, Pires D P, Bernardes E, Egues J C 2020 Phys. Rev. B 101 134416

    [50]

    Wang W T, Wu C L, Chiang J C, Lo I, Kao H F, Hsu Y C, Pang W Y, Jang D J, Lee M E, Chang Y C, Chen C N 2010 J. Appl. Phys.108 083718

    [51]

    Harmon N J, Putikka W O, Joynt R 2011 Appl. Phys. Lett. 98 073108

    [52]

    Wu M W, Jiang J H, Weng M Q 2010 Phys. Rep. 493 61

    [53]

    D’Yakonov M I, Perel’ V I 1971 JETP Lett. 33 1053

    [54]

    Kikkawa J M, Awschalom D D 1998 Phys. Rev. Lett. 80 4313

    [55]

    Boross P, Dóra B, Kiss A, Simon F 2013 Sci. Rep. 3 3233

    [56]

    Bir G L, Aronov A G, Pikus G E 1975 JETP Lett. 42 705

    [57]

    Fishman G, Lampel G 1977 Phys. Rev. B 16 820

    [58]

    Chen Z, Dong G P, Qiu J R 2021 Adv. Quantum Technol. 4 2100052

    [59]

    Meier F, Zakharchenya B P 1984 Optical Orientation (Amsterdam: North-Holland) pp311—321

    [60]

    Jonker B T 2000 Phys. Rev. B 62 8180

    [61]

    Cláudio de Carvalho L, Schleife A, Fuchs F, Bechstedt F 2010 Appl. Phys. Lett. 97 232101

    [62]

    Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491

    [63]

    Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65

    [64]

    Ganichev S D, Prettl W 2003 J. Phys.: Condens. Matter 15 R935

    [65]

    Altmann P, Hernandez F G G, Ferreira G J, Kohda M, Reichl C, Wegscheider W, Salis G 2016 Phys. Rev. Lett. 116 196802

    [66]

    Zhang S X, Tang N, Liu X C, Zhang X Y, Fu L, Zhang Y F, Fan T, Sun Z H, Ge W K, Shen B 2021 Appl. Phys. Lett. 118 252107

    [67]

    Zhang S X, Tang N, Zhang X Y, Liu X C, Fu L, Zhang Y F, Fan T, Sun Z H, Wang F T, Ge W K, Shen B 2021 Fund. Res. 1 656

    [68]

    Syperek M, Yakovlev D R, Greilich A, Bayer M, Misiewicz J, Reuter D, Wieck A 2007 AIP Conf. Proc. 893 1303

    [69]

    Uenoyama T, Sham L J 1990 Phys. Rev. Lett. 64 3070

    [70]

    Ferreira R, Bastard G 1991 Phys. Rev. B 43 9687

    [71]

    Hilton D J, Tang C L 2002 Phys. Rev. Lett. 89 146601

    [72]

    El Khalifi Y, Gil B, Mathieu H, Fukunaga T, Nakashima H 1989 Phys. Rev. B 39 13533

    [73]

    Korn T, Kugler M, Griesbeck M, Schulz R, Wagner A, Hirmer M, Gerl C, Schuh D, Wegscheider W, Schüller C 2010 New J. Phys. 12 043003

    [74]

    Kugler M, Andlauer T, Korn T, Wagner A, Fehringer S, Schulz R, Kubová M, Gerl C, Schuh D, Wegscheider W, Vogl P, Schüller C 2009 Phys. Rev. B 80 035325

    [75]

    Yamada S, Fujimoto A, Yagi S, Narui H, Yamaguchi E, Imanaka Y 2024 Appl. Phys. Lett. 124 262102

    [76]

    Choi W Y, Kim H J, Chang J, Han S H, Koo H C, Johnson M 2015 Nat. Nanotechnol. 10 666

    [77]

    Choi W Y, Kim H J, Chang J, Han S H, Abbout A, Saidaoui H B M, Manchon A, Lee K J, Koo H C 2018 Nano Lett. 18 7998

    [78]

    Oltscher M, Ciorga M, Utz M, Schuh D, Bougeard D, Weiss D 2014 Phys. Rev. Lett. 113 236602

    [79]

    Kallaher R L, Heremans J J, Goel N, Chung S J, Santos M B 2010 Phys. Rev. B 81 075303

    [80]

    van Weperen I, Tarasinski B, Eeltink D, Pribiag V S, Plissard S R, Bakkers E P A M, Kouwenhoven L P, Wimmer M 2015 Phys. Rev. B 91 201413

    [81]

    Badalyan S M, Fabian J 2010 Phys. Rev. Lett. 105 186601

    [82]

    Fu J Y, Penteado P H, Hachiya M O, Loss D, Egues J C 2016 Phys. Rev. Lett. 117 226401

    [83]

    Bhattacharya A, Baten M Z, Bhattacharya P 2016 Appl. Phys. Lett. 108 042406

    [84]

    Kum H, Heo J, Jahangir S, Banerjee A, Guo W, Bhattacharya P 2012 Appl. Phys. Lett. 100 182407

    [85]

    Park T E, Park Y H, Lee J M, Kim S W, Park H G, Min B C, Kim H J, Koo H C, Choi H J, Han S H, Johnson M, Chang J 2017 Nat. Commun. 8 15722

  • [1] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质.  , doi: 10.7498/aps.71.20220796
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , doi: 10.7498/aps.71.20212111
    [3] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变.  , doi: 10.7498/aps.70.20201456
    [4] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , doi: 10.7498/aps.70.20210705
    [5] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性.  , doi: 10.7498/aps.70.20201742
    [6] 郭志超, 张桐耀, 张靖. 微米气室铯原子自旋噪声谱.  , doi: 10.7498/aps.69.20191623
    [7] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展.  , doi: 10.7498/aps.69.20191241
    [8] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , doi: 10.7498/aps.68.20190037
    [9] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , doi: 10.7498/aps.68.20190143
    [10] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为.  , doi: 10.7498/aps.68.20181887
    [11] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学.  , doi: 10.7498/aps.68.20191433
    [12] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , doi: 10.7498/aps.67.20180624
    [13] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学.  , doi: 10.7498/aps.64.207103
    [14] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , doi: 10.7498/aps.64.097201
    [15] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , doi: 10.7498/aps.64.030302
    [16] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , doi: 10.7498/aps.64.187103
    [17] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究.  , doi: 10.7498/aps.61.177203
    [18] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响.  , doi: 10.7498/aps.60.075202
    [19] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , doi: 10.7498/aps.59.925
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  44
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-04

/

返回文章
返回
Baidu
map