搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基非晶合金微观结构与磁性的关联性

刘小榕 李康源 李茂枝

引用本文:
Citation:

铁基非晶合金微观结构与磁性的关联性

刘小榕, 李康源, 李茂枝

Correlation Between Atomic Structures and Magnetic Properties in Iron-Based Amorphous Alloys

X. R. Liu, K. Y. Li, M. Z. Li
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 铁基非晶合金因高饱和磁化强度、高磁导率、低矫顽力和低损耗等优异的软磁性能而持续受到广泛关注。然而,目前针对非晶合金磁性的理论研究仍不完善,铁基非晶合金磁性能的结构本源尚未厘清,常难以充分解释其磁性行为。本文简要总结了近年来实验与计算研究中,铁基非晶结构与软磁性能,尤其是饱和磁化强度的关联机制等的研究进展。已有的研究工作主要集中在不同元素如何影响铁基非晶合金的电子结构、磁矩、饱和磁化强度等,缺乏对局域原子结构包括短程序、中程序结构影响磁矩等磁性能的微观机理的深入探索。本文试图为进一步深入系统地探索铁基非晶合金软磁性能的微观机理理清研究思路。
    Fe-based amorphous alloys have continuously attracted extensive attention due to their excellent soft magnetic properties, such as high saturation magnetization, high permeability, low coercivity, and low core loss. However, the theoretical studies on the magnetism of amorphous alloys remain incomplete, and the structural origins of the magnetic properties in Fe-based amorphous alloys are still unclear, making it difficult to fully explain their magnetic behavior. Accordingly, this review summarizes recent experimental and computational progress in exploring potential correlation mechanisms between amorphous structures and soft-magnetic properties. Existing research has primarily focused on how different elements affect the electronic structure, magnetic moment, saturation magnetization, and other properties of iron-based amorphous alloys. However, little effort has been devoted to the in-depth exploration into the underlying mechanisms of the local atomic structures, including short-range and medium-range order, influence magnetic properties. This review aims to provide a reference for further elucidating the structural origins of magnetic properties in Fe-based amorphous alloys, while also identifying key unresolved issues in future research.
  • [1]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 eaao0195

    [2]

    Shi L X, Chai T T, Du X N, Jia J L, Yao K F, Zhang Z J, Chen N 2026 Mater. Sci. Eng. R Rep. 167 101078

    [3]

    Hui X D, Lv K, Si J J, Du C X, Wang R S 2018 Chin. J. Eng. 40 1158 (in Chinese) [惠希东, 吕旷, 斯佳佳, 杜晨曦, 王荣山 2018 工程科学学报 40 1158]

    [4]

    Duwez P, Lin S C H 1967 J. Appl. Phys. 38 4096

    [5]

    Luborsky F 1978 IEEE Trans. Magn. 14 1008

    [6]

    Hasegawa R 2004 Mater. Sci. Eng. A 375–377 90

    [7]

    Cotai A, Neamţu B V, Popa F, Marinca T F, Isnard O, Chicinaş I 2021 J. Alloys Compd. 880 160497

    [8]

    Ahmadian Baghbaderani H, Masood A, Alvarez K L, Ó Mathúna C, McCloskey P, Stamenov P 2021 J. Alloys Compd. 877 160194

    [9]

    Ohta M, Yoshizawa Y 2007 Appl. Phys. Lett. 91 062517

    [10]

    Makino A 2012 IEEE Trans. Magn. 48 1331

    [11]

    Chen H S 1980 Rep. Prog. Phys. 43 353

    [12]

    Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131

    [13]

    Ouyang G Y, Jensen B, Tang W, Schlagel J, Hilliard B, Pan C C, Cui B Z, Dennis K, Jiles D, Monson T, Anderson I, Kramer M J, Cui J 2020 Acta Mater. 201 209

    [14]

    Ke H B, Zhou J, Tong X, Wang W H 2025 Sci. Technol. Rev. 43 20 (in Chinese) [柯海波, 周靖, 童星, 汪卫华 2025 科技导报 43 20]

    [15]

    Gubanov A I 1960 Soviet Physics-Solid State 30 275

    [16]

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 01610 (in Chinese) [姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 67 016101]

    [17]

    Shen B L, Akiba M, Inoue A 2006 Appl. Phys. Lett. 88 131907

    [18]

    O’Handley R C, Hasegawa R, Ray R, Chou C P 1976 Appl. Phys. Lett. 29 330

    [19]

    Mitera M, Naka M, Masumoto T, Kazama N, Watanabe K 1978 Phys. Stat. Sol. (a) 49 K163

    [20]

    Ray R, Hasegawa R, Chou C P, Davis L A 1977 Scr. Metall. 11 973

    [21]

    Shi L X, Hu X Y, Li Y H, Yuan G T, Yao K F 2021 Intermetallics 131 107116

    [22]

    Grey D G, Cesnek M, Bujdoš M, Miglierini M B 2024 Metals 14 712

    [23]

    Jiao Z B, Li H X, Gao J E, Wu Y, Lu Z P 2011 Intermetallics 19 1502

    [24]

    Liu Q L, Mo J Y, Liu H S, Xue L, Hou L, Yang W M, Dou L T, Shen B L, Dou L M 2016 J. Non-Cryst. Solids 443 108

    [25]

    Zhou W H, Zhang S Y, Song L J, Huo J T, Wang J Q, Li Y 2025 J. Mater. Sci. Technol. 213 146

    [26]

    Zhao C L, Wang A D, He A, Chang C T, Liu C T 2021 Sci. China Mater. 64 1813

    [27]

    Suzuki K, Ito N, Garitaonandia J S, Cashion J D 2006 J. Appl. Phys. 99 08F114

    [28]

    Liu M, Wang Z, Xu Y C 2015 IEEE Trans. Magn. 51 1

    [29]

    Suzuki K, Ito N, Saranu S, Herr U, Michels A, Garitaonandia J S 2008 J. Appl. Phys. 103 07E730

    [30]

    Jiang M F, Wang J J, Cai M J, Li J, Dong W Y, Guo Z J, Shen B L 2025 J. Non-Cryst. Solids 650 123382

    [31]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044

    [32]

    Ding H P, Liu L C, Shao L L, Zhou J, Zuo D R, Ke H B, Wang W H 2025 Acta Phys. Sin. 74 136101 (in Chinese) [丁华平, 刘李晨, 邵里良, 周靖, 左定荣, 柯海波, 汪卫华 2025 74 136101]

    [33]

    Huang B, Yang Y, Wang A D, Wang Q, Liu C T 2017 Intermetallics 84 74

    [34]

    Cai Y F, Lin B, Wang Y C, Umetsu R, Liang D D, Qu S J, Zhang Y, Wang J Q, Shen J 2024 J. Mater. Sci. Technol. 180 141

    [35]

    Jiao Z B, Li H X, Gao J E, Wu Y, Lu Z P 2011 Intermetallics 19 1502

    [36]

    Xu K, Ling H B, Li Q, Li J F, Yao K F, Guo S F 2014 Intermetallics 51 53

    [37]

    Amiya K, Urata A, Nishiyama N, Inoue A 2005 J. Appl. Phys. 97 10F913

    [38]

    Jung H Y, Stoica M, Yi S, Kim D H, Eckert J 2014 J. Magn. Magn. Mater. 364 80

    [39]

    Yang Z Z, Zhu L, Jiang S S, Zhu C, Xu Q H, Lin Y, Chen F G, Wang Y G 2022 J. Alloys Compd. 904 164067

    [40]

    Yang W M, Liu H S, Fan X D, Xue L, Dun C C, Shen B L 2015 J. Non-Cryst. Solids 419 65

    [41]

    Dou L T, Liu H S, Hou L, Xue L, Yang W M, Zhao Y C, Chang C T, Shen B L 2014 J. Magn. Magn. Mater. 358–359 23

    [42]

    Xu Q H, Lu L L, Yan Q, Chen F G, Jain A, Lin Y, Zhou H Z, Wang Y G 2023 J. Alloys Compd. 960 171059

    [43]

    Hasegawa R, O’Handley R C 1979 J. Appl. Phys. 50 1551

    [44]

    Feng Y, Yan Z C, Chen Q, Zhang H, Qi Z G, Liu H Z, Bai Y W, Wang W M 2022 Metall. Mater. Trans. A 53 3002

    [45]

    Chrobak A, Nosenko V, Haneczok G, Boichyshyn L, Kotur B, Bajorek A, Zivotsky O, Hendrych A 2011 Mater. Chem. Phys. 130 603

    [46]

    Mi X R, Hu L, Wu B W, Long Q, Wei Y B 2024 Acta Phys. Sin. 73 097102 (in Chinese) [糜晓磊, 胡亮, 武博文, 龙强, 魏炳波 2024 73 097102]

    [47]

    Ge J C, He H Y, Zhou J, Lu C Y, Dong W X, Liu S N, Lan S, Wu Z D, Wang A D, Wang L, Yu C, Shen B L, Wang X L 2019 J. Alloys Compd. 787 831

    [48]

    Zhu L, Liu S N, Lan S, Xu Y M, Li C, Zheng H, Jiang S S, Men J R, Wang X L, Pan F M, Wang Y G 2020 J. Alloys Compd. 823 153911

    [49]

    Ge J C, Gu Y, Yao Z Z, Liu S N, Ying H Q, Lu C Y, Wu Z D, Ren Y, Suzuki J ichi, Xie Z H, Ke Y B, Zeng J R, Zhu H, Tang S, Wang X L, Lan S 2024 J. Mater. Sci. Technol. 176 224

    [50]

    Bai Y W, Li J C, Zhang J, Dong B S, Li X X, Zhao X, Cui Z, Li T, Hu L 2024 J. Non-Cryst. Solids 624 122705

    [51]

    Bai Y W, Bian X F, Qin J Y, Li X X, Song K K 2020 J. Non-Cryst. Solids 528 119723

    [52]

    Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke G B, Wang G, Shen J, Makino A, Wang W H 2022 J. Mater. Sci. Technol. 96 233

    [53]

    Lin Y, Dai J, Yang Z Z, Jiang S S, Xu Q H, Wang Y G, Chen F G, Jain A 2023 J. Alloys Compd. 936 168268

    [54]

    Cowlam N, Carr G E 1985 J. Phys. F: Met. Phys. 15 1109

    [55]

    Bratkovsky A M, Smirnov A V 1993 J. Phys.: Condens. Matter 5 3203

    [56]

    Bratkovsky A M, Smirnov A V 1993 Phys. Rev. B 48 9606

    [57]

    Hafner J, Tegze M, Becker Ch 1994 Phys. Rev. B 49 285

    [58]

    Nowak H J, Andersen O K, Fujiwara T, Jepsen O, Vargas P 1991 Phys. Rev. B 44 3577

    [59]

    Ching W Y, Xu Y N, Harmon B N, Ye J, Leung T C 1990 Phys. Rev. B 42 4460

    [60]

    Tian H, Zhang C, Zhao J J, Dong C, Wen B, Wang Q 2012 Physica B 407 250

    [61]

    Zhu L, Wang Y G, Cao C C, Meng Y 2017 Chin. Phys. B 26 067101

    [62]

    Lu S W 2023 J. Non-Cryst. Solids 617 122510

    [63]

    Wang Y C, Zhang Y, Makino Akihiro, Liang Y Y, Kawazoe Y 2014 IEEE Trans. Magn. 50 1

    [64]

    Wang Y C, Zhang Y, Takeuchi A, Makino A, Liang Y, Kawazoe Y 2015 Mater. Res. Express 2 016506

    [65]

    Lu L J, Guo Y M, Li X, Zhang T 2022 J. Alloy. Compd. 904 164101

    [66]

    Wang H, Hu T, Zhang T 2013 Physica B 411 161

    [67]

    Jiang Y H, Jia S K, Chen S W, Li X L, Wang L, Han X J 2022 Materials 15 3149

    [68]

    Park J H, Choi M Y, Kim S M, Hong Y K, Choi-Yim H 2024 J. Non-Cryst. Solids 624 122724

    [69]

    Muraca D, Cremaschi V J, Sirkin H 2007 J. Magn. Magn. Mater. 311 618

    [70]

    Luborsky F E 1983 Amorphous metallic alloys (Oxford: Butterworth-Heinemann) pp1–7

    [71]

    Estévez D C, Betancourt I 2012 J. Non-Cryst. Solids 358 1778

    [72]

    Cremaschi V, Sánchez G, Sirkin H 2004 Physica B 354 213

    [73]

    Chen H, Zhou S X, Dong B S, Jin J J, Liu T Q, Guan P F 2020 J. Alloy. Compd. 819 153062

    [74]

    Xiao J H, Ding D W, Li L, Sun Y T, Li M Z, Wang W H 2025 Chin. Phys. Lett. 42 016102

    [75]

    Li X, Zuo L, Zhang X, Zhang T 2018 J. Phys. Chem. C 122 28613

    [76]

    Zhou J F, You J H, Qiu K Q 2022 J. Appl. Phys. 132 040702

    [77]

    Cao S, Liu G Y, Huang J K, Yu X Q, Fan D, Ni Y, Luo Y M 2024 J. Non-Cryst. Solids 624 122726

    [78]

    Agrawal A, Choudhary A 2016 APL Mater. 4 053208

    [79]

    Xiong J, Bai B W, Jiang H R, Faus-Golfe A 2024 Rare Met. 43 5256

    [80]

    Li K Y, Liu L C, Shao L L, Zhou J, Ke H B, Li M Z, Wang W H J. Alloy. Compd. 1010 178325

    [81]

    Guo W H, Wu Y, Shi L X, Jia J L, Wang R B, Bu H T, Zhu Z F, Shao Y, Yao K F 2025 Acta Mater. 285 120643

    [82]

    Liu Y B, Madanchi A, Anker A S, Simine L, Deringer V L 2025 Nat. Rev. Mater. 10 228

    [83]

    Yang S Y, Zang B W, Xiang M L, Shen F Y, Song L, Gao M, Zhang Y, Huo J T, Wang J Q 2025 Adv. Funct. Mater. 35 2425588

    [84]

    Friederich P, Häse F, Proppe J, Aspuru-Guzik A 2021 Nat. Mater. 20 750

    [85]

    Zhang C, Tang L, Sun Y, Ho K M, Wentzcovitch R M, Wang C Z 2022 Phys. Rev. Mater. 6 063802

    [86]

    Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater. 23 52

    [87]

    Wu Y, Huang F, Chen Z, Liu H, Zhou J, Ke H, Peng H 2025 J. Non-Cryst. Solids 665 123608

  • [1] 张响, 宋英杰, 刘海顺, 熊翔, 杨卫明, 韩陈康. Fe73.5Si13.5B9Cu1Nb3非晶合金的高温氧化和晶化机理.  , doi: 10.7498/aps.74.20250112
    [2] 丁华平, 刘李晨, 邵里良, 周靖, 左定荣, 柯海波, 汪卫华. 序调控工程创制高频非晶基软磁材料研究进展.  , doi: 10.7498/aps.74.20250585
    [3] 朱凡, 周炯, 黄煌, 温文馨, 叶杰宇, 严珍珍. 非晶合金在介观尺度下的结构特征: 关联原子构型与宏观性能的空间非均匀性.  , doi: 10.7498/aps.74.20250584
    [4] 林可心, 杨卫明, 李文宇, 马严, 马丽, 张响, 刘海顺. 激光熔化3D打印高性能铁基非晶软磁器件及其物理机制.  , doi: 10.7498/aps.74.20250559
    [5] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明. 铁基非晶条带催化降解性能的退火晶化调控机理.  , doi: 10.7498/aps.73.20240249
    [6] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性.  , doi: 10.7498/aps.73.20231421
    [7] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制.  , doi: 10.7498/aps.72.20231169
    [8] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响.  , doi: 10.7498/aps.71.20220446
    [9] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , doi: 10.7498/aps.69.20191781
    [10] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景.  , doi: 10.7498/aps.67.20171473
    [11] 王峥, 汪卫华. 非晶合金中的流变单元.  , doi: 10.7498/aps.66.176103
    [12] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , doi: 10.7498/aps.66.178101
    [13] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀.  , doi: 10.7498/aps.66.176109
    [14] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , doi: 10.7498/aps.66.176110
    [15] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体.  , doi: 10.7498/aps.66.176113
    [16] 叶凤霞, 陈燕, 余鹏, 罗强, 曲寿江, 沈军. 通过AC-HVAF方法制备铁基非晶合金涂层的结构分析.  , doi: 10.7498/aps.63.078101
    [17] 张弘, 刘曦, 王兰喜, 曹江伟, 刘小晰, 魏福林. 基片对交替溅射制备的MnZn铁氧体薄膜结构和磁性的影响.  , doi: 10.7498/aps.58.4970
    [18] 李彦波, 刘曦, 李正华, 付煜, 卡姆津·阿·谢, 魏福林, 杨正. 界面对Fe65Co35薄膜微结构和软磁性的影响.  , doi: 10.7498/aps.58.7972
    [19] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究.  , doi: 10.7498/aps.54.3862
    [20] 李印峰, 陈笃行, 沈保根, M.VAZQUEZ, A.HERNANDO. 非晶态铁基合金退火样品的偏移回线.  , doi: 10.7498/aps.50.953
计量
  • 文章访问数:  25
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-27

/

返回文章
返回
Baidu
map