搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道磁阻传感器性能优化研究进展

刘远溱 雷绍钰 张诗怡 潘孟春 胡悦国 胡佳飞 彭俊平 杜青法 张琦 李裴森

引用本文:
Citation:

隧道磁阻传感器性能优化研究进展

刘远溱, 雷绍钰, 张诗怡, 潘孟春, 胡悦国, 胡佳飞, 彭俊平, 杜青法, 张琦, 李裴森

Research Progress on Performance Optimization of Tunnel Magnetoresistive Sensors

Liu Yuanzhen, Lei Shaoyu, Zhang Shiyi, Pan Mengchun, Hu Yueguo, Hu Jiafei, Peng Junping, Du Qingfa, Zhang Qi, Li Peisen
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 隧道磁阻( Tunneling Magnetoresistance,TMR)传感器作为新一代高性能磁传感技术的代表,凭借其高灵敏度、低功耗、宽频响及优异的集成性,在工业自动化、新能源汽车、生物医疗和智能电网等领域展现出广泛应用前景。本文系统综述了TMR磁传感器的性能优化策略,重点从薄膜材料体系与敏感结构设计两个维度展开分析。在材料体系方面,详细探讨了高灵敏TMR材料体系和宽量程TMR材料体系的发展现状与优化思路;在结构设计方面,系统阐述了MTJ几何形状优化、磁轭结构设计、磁通聚集器集成及噪声调制技术等创新方案。文章还总结了TMR传感器在生物医疗和智能电网等前沿领域的应用进展,并对未来发展方向进行展望:开发更高灵敏度与更宽量程的TMR材料体系、实现一体化高性能三轴TMR磁矢量传感、探索TMR与人工智能的深度融合等。本文为TMR磁传感器的性能突破与应用拓展提供了系统性参考,对推动其在高精度磁场探测领域的深入应用具有重要指导意义。
    Tunneling Magnetoresistance (TMR) sensors have emerged as a leading technology in high-performance magnetic sensing, distinguished by their high sensitivity, low power consumption, and miniaturization. To address the evolving demands of cutting-edge applications like biomagnetic imaging and smart grid monitoring, continuous performance enhancement is crucial. This review systematically outlines the key strategies for optimizing TMR sensors, focusing on thin-film material engineering and sensitive microstructure design. Material advancements are dissected along two paths: developing high-sensitivity systems via MgO barriers and composite free layers, and creating wide-linear-range systems through anisotropy engineering, including both perpendicular (PMA) and in-plane (IMA) configurations, as well as dynamic methods like electric-field and strain modulation. Structurally, we highlight innovations such as vortex-state MTJs and magnetic flux concentrators to enhance linearity and sensitivity, alongside advanced noise modulation techniques that effectively suppress low-frequency 1/f noise. The practical impact of these optimizations is evidenced by TMR sensors now capable of measuring magnetocardiograms (MCG) outside shielded environments and providing high-accuracy current sensing in smart grids. Future development is directed towards novel material systems that balance high sensitivity with a wide linear range, the realization of monolithic three-axis vector sensors, and the deep integration of TMR technology with artificial intelligence for smart sensing systems. This work provides a comprehensive reference for advancing TMR sensor technology and its applications in high-precision magnetic field detection.
  • [1]

    Zheng C, Zhu K, Cardoso De Freitas S, Chang J-Y, Davies J E, Eames P, Freitas P P, Kazakova O, Kim C, Leung C-W, Liou S-H, Ognev A, Piramanayagam S N, Ripka P, Samardak A, Shin K-H, Tong S-Y, Tung M-J, Wang S X, Xue S, Yin X, Pong P W T 2019 IEEE Trans. Magn. 55 1

    [2]

    Yang S, Zhang J 2021 Chemosensors 9 211

    [3]

    Julliere M 1975 Physics Letters A 54 225

    [4]

    Oogane M 2024 IEICE Trans. Electron. E107.C 171

    [5]

    Yan S, Zhou Z, Yang Y, Leng Q, Zhao W 2022 Tsinghua Sci. Technol. 27 443

    [6]

    Leitao D C, Riel F J F V, Rasly M, Araujo P D R, Salvador M, Paz E, Koopmans B 2024 Npj Spintronics 2 54

    [7]

    Fujiwara K, Oogane M, Nishikawa T, Naganuma H, Ando Y 2013 Jpn. J. Appl. Phys. 52 04CM07

    [8]

    Han X F, Zhang Y, Feng J F, Chen C, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 409 (in Chinese) [韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 71 409]

    [9]

    Zhao W S, Zhang B Y, Peng S Z 2023 Spintronic Science and Technology (Beijing: Posts & Telecom Press) p320-324 (in Chinese) [赵巍胜, 张博宇, 彭守仲 2023 自旋电子科学与技术 (北京: 人民邮电出版社) 第320-324页]

    [10]

    Zhong Z Y 2015 Magnetoresistive Sensors (Beijing: Science Press) p32-33 (in Chinese) [钟智勇 2015 磁电阻传感器 (北京: 科学出版社) 第32-33页]

    [11]

    Ye X B 2022 Sensors and Detection Technology (Beijing: China Machine Press) p84-86 (in Chinese) [叶湘滨 2022 传感器与检测技术 (北京:机械工业出版社) 第84-86页]

    [12]

    Nakano T, Fujiwara K, Oogane M 2025 Applied Physics Letters 126 160503

    [13]

    Brown B J, Mitchell L K, Bheemarasetty V S, Cao H M, Kingsnorth J N, Sanes J N, Xiao G 2025 Phys. Rev. Applied 24 034063

    [14]

    Cardoso S, Leitao D C, Gameiro L, Cardoso F, Ferreira R, Paz E, Freitas P P 2014 Microsyst Technol 20 793

    [15]

    Sun Y, Xia Q, Zhang D, Mou Q, Li Y, Xie L, Guang S, Cao Z, Zhu D, Zhao W 2024 AIP Advances 14 015304

    [16]

    Luo J, Xu Z, Jin Z, Wang M, Cai X, Chen J 2024 ACS Appl. Mater. Interfaces 16 31677

    [17]

    Han X, Zhang Y, Wang Y, Huang L, Ma Q, Liu H, Wan C, Feng J, Yin L, Yu G, Yu T, Yan Y 2021 Chinese Phys. Lett. 38 128501

    [18]

    Liu J, Guan M, Gong Y, Ni F, Gao X, Su W, Wang Z, Jiang Z, Hu Z, Liu M 2024 IEEE Electron Device Lett. 45 1289

    [19]

    Yao X P, Pan M C, Ji M H, Hu J F, Zhang Q, Li P S 2023 Transducer and Microsystem Technologies 42 21 (in Chinese) [姚馨平, 潘孟春, 冀敏慧, 胡佳飞, 张琦, 李裴森 2023 传感器与微系统 42 21]

    [20]

    Butler W H, Zhang X-G, Schulthess T C, MacLaren J M 2001 Phys. Rev. B 63 054416

    [21]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nature Mater 3 868

    [22]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S-H 2004 Nature Mater 3 862

    [23]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Applied Physics Letters 93 082508

    [24]

    Scheike T, Wen Z, Sukegawa H, Mitani S 2023 Applied Physics Letters 122 112404

    [25]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407

    [26]

    Karpan V M, Khomyakov P A, Starikov A A, Giovannetti G, Zwierzycki M, Talanana M, Brocks G, Van Den Brink J, Kelly P J 2008 Phys. Rev. B 78 195419

    [27]

    Pan M, Li P, Qiu W, Zhao J, Peng J, Hu J, Hu J, Tian W, Hu Y, Chen D, Wu X, Xu Z, Yuan X 2018 Journal of Magnetism and Magnetic Materials 453 101

    [28]

    Thapa A, Sharma B 2025 Adv Materials Technologies 10 e00133

    [29]

    Mi M, Xiao H, Yu L, Zhang Y, Wang Y, Cao Q, Wang Y 2023 Materials Today Nano 24 100408

    [30]

    Fujiwara K, Oogane M, Yokota S, Nishikawa T, Naganuma H, Ando Y 2012 Journal of Applied Physics 111 07C710

    [31]

    Liu F, Zhou H, Yuan L, Cai Y 2023 BMC Nurs 22 483

    [32]

    Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 Journal of Applied Physics 118 053904

    [33]

    Yuan Z H, Feng J F, Guo P, Wan C H, Wei H X, Ali S S, Han X F, Nakano T, Naganuma H, Ando Y 2016 Journal of Magnetism and Magnetic Materials 398 215

    [34]

    Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 Journal of Applied Physics 122 113903

    [35]

    Fujiwara K, Oogane M, Kanno A, Imada M, Jono J, Terauchi T, Okuno T, Aritomi Y, Morikawa M, Tsuchida M, Nakasato N, Ando Y 2018 Appl. Phys. Express 11 023001

    [36]

    Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T, Mizukami S, Kumagai S, Matsuzaki H, Nakasato N, Ando Y 2021 Appl. Phys. Express 14 123002

    [37]

    Matos F, Macedo R, Freitas P P, Cardoso S 2023 AIP Advances 13 025108

    [38]

    Akamatsu S, Oogane M, Tsunoda M, Ando Y 2020 AIP Advances 10 015302

    [39]

    Akamatsu S, Oogane M, Tsunoda M, Ando Y 2022 AIP Advances 12 075021

    [40]

    Roy T, Tsujikawa M, Kanemura T, Shirai M 2020 Journal of Magnetism and Magnetic Materials 498 166092

    [41]

    Tsuchiya T, Roy T, Elphick K, Okabayashi J, Bainsla L, Ichinose T, Suzuki K Z, Tsujikawa M, Shirai M, Hirohata A, Mizukami S 2019 Phys. Rev. Materials 3 084403

    [42]

    Zhao X P, Lu J, Mao S W, Yu Z F, Wang H L, Wang X L, Wei D H, Zhao J H 2017 J. Phys. D: Appl. Phys. 50 285002

    [43]

    Zeng Z M, Khalili Amiri P, Katine J A, Langer J, Wang K L, Jiang H W 2012 Appl. Phys. Lett. 101 062412

    [44]

    Nakano T, Oogane M, Naganuma H, Ando Y 2015 IEEE Trans. Magn. 51 1

    [45]

    Nakano T, Oogane M, Furuichi T, Ando Y 2017 Applied Physics Letters 110 012401

    [46]

    Santos P, Araujo P, Sørensen D, Matos F, Freitas P P, Cardoso S 2023 IEEE Trans. Magn. 59 1

    [47]

    Willing S, Schlage K, Bocklage L, Ramin Moayed M M, Gurieva T, Meier G, Röhlsberger R 2021 ACS Appl. Mater. Interfaces 13 32343

    [48]

    Teixeira B M S, Timopheev A A, Caçoilo N, Cuchet L, Mondaud J, Childress J R, Magalhães S, Alves E, Sobolev N A 2020 J. Phys. D: Appl. Phys. 53 455003

    [49]

    Shao Y, Khalili Amiri P 2023 Adv Materials Technologies 8 2300676

    [50]

    Naik V B, Meng H, Liu R S, Luo P, Yap S, Han G C 2014 Applied Physics Letters 104 232401

    [51]

    Ota S, Ando A, Chiba D 2018 Nat Electron 1 124

    [52]

    Yan S, Zhou Z, Cao Z, Yang Y, Li Z, Chen W, Leng Q, Zhao W 2021 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu, China p1

    [53]

    Suess D, Bachleitner-Hofmann A, Satz A, Weitensfelder H, Vogler C, Bruckner F, Abert C, Prügl K, Zimmer J, Huber C, Luber S, Raberg W, Schrefl T, Brückl H 2018 Nat Electron 1 362

    [54]

    Weitensfelder H, Brueckl H, Satz A, Pruegl K, Zimmer J, Luber S, Raberg W, Abert C, Bruckner F, Bachleitner-Hofmann A, Windl R, Suess D 2018 Phys. Rev. Applied 10 054056

    [55]

    He G, Zhang Y, Xiao G 2020 Phys. Rev. Applied 14 034051

    [56]

    Liu J, Guan M, Gong Y, Ni F, Gao X, Su W, Wang Z, Jiang Z, Hu Z, Liu M 2024 IEEE Electron Device Lett. 45 1289

    [57]

    Chen J Y, Carroll N, Feng J F, Coey J M D 2012 Applied Physics Letters 101 262402

    [58]

    Zhang X, Pan M, Lei S, Ji M, Hu Y, Hu J, Chen D, Peng J, Qiu W, Li P 2024 Applied Physics Letters 124 052404

    [59]

    Choi J-G, Hwang D-G, Rhee J-R, Lee S-S 2010 Journal of Magnetism and Magnetic Materials 322 2191

    [60]

    Manceau S, Brun T, Fischer J, Ducruet C, Sabon P, Cavoit C, Jannet G, Pinçon J-L, Prejbeanu I L, Kretzschmar M, Baraduc C 2023 Applied Physics Letters 123 082405

    [61]

    Zhang X, Bi Y, Chen G, Liu J, Li J, Feng K, Lv C, Wang W 2018 AIP Advances 8 125222

    [62]

    Feng Y, Chen J-Y, Wu K, Wang J-P 2020 Journal of Magnetism and Magnetic Materials 511 166728

    [63]

    Bi R, Zhang H, Pan S, Liu X, Chen R, Wu S, Hu J 2025 Sensors 25 4739

    [64]

    He G, Zhang Y, Qian L, Xiao G, Zhang Q, Santamarina J C, Patzek T W, Zhang X 2018 Applied Physics Letters 113 242401

    [65]

    Wu Y, Xiao L, Hou S, Gao Z, Han L 2019 IEEE Trans. Appl. Supercond. 29 1

    [66]

    Han S, Wu Y, Wang Y, Chen J 2024 Cryogenics 138 103803

    [67]

    Wu Y, Xiao L Y, Hou S Z 2019 Physics 48 14 (in Chinese) [伍岳, 肖立业, 侯世中 2019 物理 48 14]

    [68]

    Yang L, Sun K, Tao J, Zhang X, Huang D, Pan M, Hu J, Qiu W, Ji M, Hu Y, Li P, Chen D, Zhang Q, Peng J 2022 Sensors and Actuators A: Physical 342 113658

    [69]

    Jiao Q, Jin Z, Zhang C, Chen J 2025 Measurement 242 116143

    [70]

    Edelstein A S, Fischer G A 2002 Journal of Applied Physics 91 7795

    [71]

    Guedes A, Patil S B, Cardoso S, Chu V, Conde J P, Freitas P P 2008 Journal of Applied Physics 103 07E924

    [72]

    Guedes A, Patil S B, Wisniowski P, Chu V, Conde J P, Freitas P P 2008 IEEE Trans. Magn. 44 2554

    [73]

    Hu J, Pan M, Tian W, Chen D, Zhao J, Luo F 2012 Applied Physics Letters 100 244102

    [74]

    Du Q, Peng J, Qiu W, Ding Q, Pan M, Hu J, Sun K, Chen D, Pan L, Che Y, Zhang X, Li P, Zhang B 2019 IEEE Electron Device Lett. 40 1824

    [75]

    Pan L, Pan M, Hu J, Hu Y, Che Y, Yu Y, Wang N, Qiu W, Li P, Peng J, Jiang J 2020 Sensors 20 1440

    [76]

    Pan L, Hu J, Pan M, Che Y, Hu Y, Du Q, Sun K, Yu Y, Zhang Q, Peng J, Qiu W, Li P, Wang J 2021 Journal of Magnetism and Magnetic Materials 517 167393

    [77]

    Kanno A, Nakasato N, Oogane M, Fujiwara K, Nakano T, Arimoto T, Matsuzaki H, Ando Y 2022 Sci Rep 12 6106

    [78]

    Valadeiro J, Cardoso S, Macedo R, Guedes A, Gaspar J, Freitas P 2016 Micromachines 7 88

    [79]

    Zhang J, Pan M, Du Q, Hu J, Sun K, Yu Y, Zhang X, Luo H 2021 Micromachines 12 722

    [80]

    Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T, Mizukami S, Kumagai S, Matsuzaki H, Nakasato N, Ando Y 2021 Appl. Phys. Express 14 123002

    [81]

    Fujiwara K, Oogane M, Kanno A, Imada M, Jono J, Terauchi T, Okuno T, Aritomi Y, Morikawa M, Tsuchida M, Nakasato N, Ando Y 2018 Appl. Phys. Express 11 023001

    [82]

    Kurashima K, Kataoka M, Nakano T, Fujiwara K, Kato S, Nakamura T, Yuzawa M, Masuda M, Ichimura K, Okatake S, Moriyasu Y, Sugiyama K, Oogane M, Ando Y, Kumagai S, Matsuzaki H, Mochizuki H 2023 Sensors 23 646

    [83]

    Dey C, Yari P, Wu K 2023 Nano Futures 7 012002

    [84]

    Murzin D, Mapps D J, Levada K, Belyaev V, Omelyanchik A, Panina L, Rodionova V 2020 Sensors 20 1569

    [85]

    Su D, Wu K, Saha R, Peng C, Wang J-P 2019 Micromachines 11 34

    [86]

    An Z, Zhang L, Fan Y, Li Q, Li D 2025 Sensors and Actuators A: Physical 382 116174

    [87]

    Jiao Q, Jin Z, Zhang C, Chen J 2025 Measurement 242 116143

    [88]

    Lu W S, You R, Zhou Y, Yuan H Y, You Z 2020 Chin. J. Sci. Instrum. 41 1 (in Chinese) [鲁文帅, 尤睿, 周扬, 袁宏永, 尤政 2020 仪器仪表学报 41 1]

    [89]

    Ziegler P, Troster N, Schmidt D, Ruthardt J, Fischer M, Roth-Stielow J 2020 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe) Lyon France, September 5-9, 2020 pP.1

    [90]

    Liu J, Lee C-K, Pong P W T 2024 IEEE Trans. Instrum. Meas. 73 1

    [91]

    Muehlenhoff C, Vogler C, Raberg W, Suess D, Albrecht M 2021 IEEE Sensors J. 21 13176

    [92]

    Yang L, Sun K, Pan M, Zhang X, Peng J, Hu Y, Hu J, Qiu W, Li P 2023 IEEE Sensors J. 23 240

    [93]

    Li R, Zhang S, Luo S, Guo Z, Xu Y, Ouyang J, Song M, Zou Q, Xi L, Yang X, Hong J, You L 2021 Nat Electron 4 179

    [94]

    Xu Y, Yang Y, Zhang M, Luo Z, Wu Y 2018 Adv Materials Technologies 3 1800073

    [95]

    Shiogai J, Fujiwara K, Nojima T, Tsukazaki A 2021 Commun Mater 2 102

    [96]

    Camsari K Y, Torunbalci M M, Borders W A, Ohno H, Fukami S 2021 Phys. Rev. Applied 15 044049

    [97]

    Krizakova V, Perumkunnil M, Couet S, Gambardella P, Garello K 2022 Journal of Magnetism and Magnetic Materials 562 169692

    [98]

    Finocchio G, Incorvia J A C, Friedman J S, Yang Q, Giordano A, Grollier J, Yang H, Ciubotaru F, Chumak A V, Naeemi A J, Cotofana S D, Tomasello R, Panagopoulos C, Carpentieri M, Lin P, Pan G, Yang J J, Todri-Sanial A, Boschetto G, Makasheva K, Sangwan V K, Trivedi A R, Hersam M C, Camsari K Y, McMahon P L, Datta S, Koiller B, Aguilar G H, Temporão G P, Rodrigues D R, Sunada S, Everschor-Sitte K, Tatsumura K, Goto H, Puliafito V, Åkerman J, Takesue H, Ventra M D, Pershin Y V, Mukhopadhyay S, Roy K, Ting Wang I-, Kang W, Zhu Y, Kaushik B K, Hasler J, Ganguly S, Ghosh A W, Levy W, Roychowdhury V, Bandyopadhyay S 2024 Nano Futures 8 012001

    [99]

    Shao Q, Wang Z, Zhou Y, Fukami S, Querlioz D, Chua L O 2025 Npj Spintronics 3 16

  • [1] 陈鹏博, 王少义, 张文博, 温家星, 吴玉迟, 赵宗清, 王度. 基于深度学习的长波红外介电光栅加速器结构设计.  , doi: 10.7498/aps.74.20250130
    [2] 林基艳, 李耀, 陈诚, 林书玉, 郭林伟, 徐洁. 柱状和声学表面结构的压电超声换能器.  , doi: 10.7498/aps.74.20250901
    [3] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理.  , doi: 10.7498/aps.73.20230708
    [4] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化.  , doi: 10.7498/aps.70.20210532
    [5] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法.  , doi: 10.7498/aps.70.20201828
    [6] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计.  , doi: 10.7498/aps.70.20200741
    [7] 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能.  , doi: 10.7498/aps.70.20201802
    [8] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前. Ag@SiO2耦合结构设计及其对薄膜太阳电池的响应调控.  , doi: 10.7498/aps.69.20200334
    [9] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化.  , doi: 10.7498/aps.69.20191891
    [10] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者.  , doi: 10.7498/aps.69.20200980
    [11] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究.  , doi: 10.7498/aps.68.20190642
    [12] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机.  , doi: 10.7498/aps.68.20191091
    [13] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究.  , doi: 10.7498/aps.68.20190882
    [14] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计.  , doi: 10.7498/aps.64.224401
    [15] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化.  , doi: 10.7498/aps.64.107802
    [16] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究.  , doi: 10.7498/aps.64.047102
    [17] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真.  , doi: 10.7498/aps.63.198802
    [18] 杨晨, 张洪欣, 王海侠, 徐楠, 许媛媛, 黄丽玉, 张可欣. 十字环型左手材料单元结构设计与仿真.  , doi: 10.7498/aps.61.164101
    [19] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟.  , doi: 10.7498/aps.58.4041
    [20] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析.  , doi: 10.7498/aps.54.3651
计量
  • 文章访问数:  57
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-30

/

返回文章
返回
Baidu
map