-
激发态质子转移是一种重要的光物理过程,在荧光探针和有机发光材料等领域具有广泛应用.为了揭示质子转移对荧光性质的调控机理,采用密度泛函理论和含时密度泛函理论方法,基于连续介质模型,研究了溶剂中(E)-3-(4-(二苯胺基)苯基)-1-(2-羟基萘-1-基)丙-2-烯-1-酮( FZ)分子的基态和激发态结构及质子转移势能曲线.并且,基于超分子模型,系统探究了乙醇与FZ超分子体系的质子转移过程.势能曲线表明,FZ分子在各种溶剂中均可发生质子转移过程.溶剂极性越强,质子转移能垒越低.因此,低极性溶剂中质子转移可以产生双荧光现象,强极性溶剂中可观测到较强的长波发射.不同的超分子体系质子转移过程明显不同.由于质子转移后能量升高,超分子体系FZ-OH1不能发生质子转移,呈现短波发射.体系FZ-OH2可以几乎无垒地发生质子转移,产生较强的长波发射.体系FZ-OH3则可以发生分步双质子转移,导致荧光猝灭.电子-空穴分析表明,荧光猝灭缘于扭曲电荷转移过程.本研究为理解质子转移机理及其应用提供了重要理论依据.
-
关键词:
- 激发态分子内质子转移 /
- 激发态双质子转移 /
- 荧光 /
- 溶剂
Excited-state intramolecular proton transfer (ESIPT) is an important photophysical process which have wide applications in fluorescent probes, molecular switches, and organic light-emitting materials. The molecule with ESIPT is highly sensitive to its surroundings, such as solvents, and exhibits fruitful fluorescence properties. Theoretical study on the microscopic mechanism of proton transfer in regulating the fluorescence properties of organic molecules is very important. Recently, Yang et al. [Yang G, Li Y, He L, et al. 2024 Microchem. J. 198 110044] designed a fluorescent probe (FZ) based on ESIPT. They observed bimodal emission, strong long-wavelength emission and weak short-wavelength emission in low-polar, highly polar non-protic and highly polar protic solvents, respectively. To reveal the microscopic mechanism of these fluorescence properties, in this work, we theoretically investigate the proton transfer process of FZ molecule in various solvents including toluene, dichloromethane, ethanol, and dimethyl sulfoxide (DMSO) by using density functional theory and time-dependent density functional theory. Based on polarizable continuum model with the integral equation formalism variant (IEFPCM), the optimized structures are obtained and potential energy curves for proton transfer are scanned employing the CAM-B3LYP functional with Grimme’s D3 dispersion and 6-31+g(d,p)/6- 311+g(d,p) basis. Importantly, the excited-state dynamics behaviors of four intermolecular hydrogen-bonding systems in ethanol solvent are explored by using super-molecular model. The structures, hydrogen-bonding energies, and interaction region indicator (IRI) analysis show that the strength of the intramolecular hydrogen bond significantly enhances upon photo excitation. The potential energy curves indicate that FZ molecules tend to undergo the ESIPT process in all the solvents. The barriers of proton transfer decrease as the solvent polarity increases. As a result, a dual emission and a strong keto (K*) emission were observed in dichloromethane (low-polar) and DMSO (highly polar non-protic), respectively. In ethanol (highly polar protic), the excited-state behaviors of the four super-molecular systems (FZ-OH1, FZ-OH2, FZ-OH3, FZ-OH4) are quite different. In FZ-OH1, ESIPT cannot occur because enol (E*) is more stable than K*. As a result, FZ-OH1 can produce the E* emission. In contrast, ESIPT can take place almost barrierlessly in FZ-OH2, resulting in the K* emission. Interestingly, FZ-OH3 could undergo stepwise excitedstate double protons transfer (ESDPT) between FZ and ethanol molecules, resulting in a dark state of K*. Hole-electron analysis demonstrates that it is the twisted intramolecular charge transfer (TICT) that quenches the fluorescence of K*. Therefore, the observed weak short-wavelength emission in ethanol could ascribe to the E* emission of FZ-OH3. Our work is of great significance in understanding and predicting the photophysical properties of organic molecules in solvents and provides a useful theoretical basis for designing and developing ESIPT-based functional materials.-
Keywords:
- excited-state intramolecular proton transfer /
- excited-state double proton transfer /
- fluorescence /
- solvent
-
[1] Gu H, Wang W J, Wu W Y, Wang M L, Liu Y R, Jiao Y J, Wang F, Wang F, Chen X Q 2023 Chem. Commun. 59 2056
[2] Zhao J Z, Ji S M, Chen Y H, Guo H M, Yang P 2012 Phys. Chem. Chem. Phys. 14 8803
[3] Chen L, Fu P Y, Wang H P, Pan M 2021 Adv. Optical Mater. 9 2001952
[4] Sedgwick A C, Wu L L, Han H H, Bull S D, He X P, James T D, Sessler J L, Tang B Z, Tian H, Yoon J 2018 Chem. Soc. Rev. 47 8842
[5] Cheng X, Wang K, Huang S, Zhang H Y, Zhang H Y, Wang Y 2015 Angew. Chem. Int. Ed. 54 8369
[6] D’Aléo A, Heresanu V, Giorgi M, Le Guennic B, Jacquemin D, Fages F 2014 J. Phys. Chem. C 118 11906
[7] Liang X N, Zhang Z Y, Fang H 2023 Spectrochim. Acta, Part A 286 121991
[8] Zhou P W, Hoffmann M R, Han K L, He G Z 2015 J. Phys. Chem. B 119 2125
[9] Jiang G S, Tang Z, Han H Y, Ding J X, Zhou P W 2021 J. Phys. Chem. B 125 9296
[10] Liu Y, Zhao J F, Wang Y, Tian J, Fei X, Wang H Y 2017 J. Mol. Liq. 233 303
[11] Wang Q J, Li X X, Song L Y, Zhao J F, Tang Z 2023 J. Mol. Liq. 382 122000
[12] Chen R, Li Q Y, Zhang Z W, Xu K, Sun L J, Ma J K, Wang T H, Mu X T, Xi Y, Cao L F, Teng B, Wu H T 2023 J. Photochem. Photobiol., A 436 114335
[13] Zhang X L, Zhu L X, Wang Z R, Cao B F, Zhou Q, Li Y, Li B, Yin H, Shi Y 2021 Chin. Phys. B 30 118202
[14] Yang G, Li Y W, He L H, Fu H Q, Wang B 2024 Microchem. J. 198 110044
[15] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Revision A.03 (Wallingford CT, Gaussian Inc.)
[16] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104
[17] Cancès E, Mennucci B, Tomasi J 1997 J. Chem. Phys. 107 3032
[18] Mennucci B, Cancès E, Tomasi J 1997 J. Phys. Chem. B 101 10506
[19] Lu T, Chen F W 2012 J. Comput. Chem. 33 580
[20] Emamian S, Lu T, Kruse H, Emamian H 2019 J. Comput. Chem. 40 2868
[21] Lu T, Chen Q X 2021 Chem. Methods 1 231
[22] Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33
[23] Momma K, Izumi F 2011 J. Appl. Cryst. 44 1272
[24] Rozmer Z, Perjési P 2016 Phytochem. Rev. 15 87
[25] Rammohan A, Reddy J S, Sravya G, Rao C N, Zyryanov G V 2020 Environ. Chem. Lett. 18 433
[26] Wang Z R, Zhou Q, Cao B F, Li B, Zhu L X, Zhang X L, Yin H, Shi Y 2022 Chin. Phys. B 31 048202
[27] Liu C, Shen Z B, Zhao J F, Chen J H 2025 J. Phys. Chem. B 129 7327
[28] Le Bahers T, Adamo C, Ciofini I 2011 J. Chem. Theory Comput. 7 2498
[29] Cao Y J, Wang L L, Liu Z Q, Sun C F, Li Y Z 2021 New J. Chem. 45 16906
[30] Yin Y R, Chen Z Z, Zhang D, Yang L J, Wang M L, Yang Y F 2024 Opt. Lett. 49 4190
[31] Cheng X Y, Zhang T S, Li Z L, Zhao K 2025 J. Phys. Chem. B 129 6061
[32] Yang Y F, Yang L J, Ma F C, Li Y Q, Qiu Y 2023 Chin. Phys. B 32 057801
[33] Liu X J, Yang X, 2023 Acta Phys. Sin. 72 113101 (in Chinese) [刘晓军,杨雪 2023 72 113101]
[34] Yang L J, Zhang D, Wang M L, Yang Y F 2023 Spectrochim. Acta, Part A 293 122475
[35] Zhang D, Liu X Y, Yin Y R, Chen Z Z, Wang M L, Han J H, Yang Y F 2025 Spectrochim. Acta, Part A 331 125795
[36] Zhang X Y, Wang X T H, Huang J J, Liao T L, Xia S H 2026 Comput. Theor. Chem. 1256 115602
[37] Liu X Y, Chang X P, Xia S H, Cui G L, Thiel W 2016 J. Chem. Theory Comput. 12 753
[38] Wu J H, Zhang X Y, Xia J L, Zhou Z H, Xia S H 2024 J. Phys. Chem. A 128 3801
[39] Kukhta N A, Bryce M R 2021 Mater. Horiz. 8 33
[40] Roohi H 2025 Dyes Pigm. 239 112721
[41] Wei C Y, Zhang Y W, Ren H X, Xu B, Tian W J 2025 Chem. Commun. 61 16529
[42] Wu J S, Liu W M, Ge J C, Zhang H Y, Wang P F 2011 Chem. Soc. Rev. 40 3483
[43] Sapsford K E, Berti L, Medintz I L 2006 Angew. Chem. Int. Ed. 45 4562
[44] Kwok R T K, Leung C W T, Lam J W Y, Tang B Z 2015 Chem. Soc. Rev. 44 4228
[45] Ma X X, Geng M H, Cheng X Y, Zhang T S, Li Z L, Zhao K 2024 Phys. Chem. Chem. Phys. 26 6008
[46] Geng M H, Ma X X, Cheng X Y, Zhang T S, Zhao K 2025 Chin. J. Chem. Phys. 38 212
计量
- 文章访问数: 38
- PDF下载量: 0
- 被引次数: 0








下载: