-
在边缘计算场景中,视觉感知系统的响应速度、体积及功耗已成为核心挑战。传统感算分离的视觉系统因数据传输导致的高延迟、高功耗以及隐私泄露等问题亟待解决。在此背景下,模仿人类视觉系统的视觉芯片成为有效解决方案之一,视觉芯片将图像采集与信息处理集成在一起,实现了感算一体的协同处理机制,能在边缘端高效完成视觉感知与计算任务。本文围绕高速视觉芯片的技术路径,系统梳理了其关键环节的研究进展,分别从高速传感器件、读出电路与智能处理三个层面展开论述。分析了CMOS图像传感器、动态视觉传感器与单光子图像传感器在实现高速光电转换中的物理机制、结构创新与性能瓶颈;探讨了高速模数转换、地址事件编码及时间相关单光子计数等读出电路架构及其效率优化策略;并介绍了基于脉冲信号的高速图像复原与脉冲神经网络处理等前沿智能处理算法。最后对高速视觉芯片未来发展趋势进行了展望。In edge computing scenarios, response speed, compactness, and power efficiency have become critical challenges for visual systems. Conventional vision architectures that separate sensing and computation suffer from high latency, excessive power consumption, and potential privacy leakage caused by data transmission. To address these issues, vision chips inspired by the human visual system have emerged as a promising solution. By integrating image acquisition and information processing within a single hardware platform, such chips enable a sensing–computation co-processing paradigm, supporting efficient visual perception and computation directly at the edge. Developing high-speed vision chips is an inherently interdisciplinary task that bridges physics, electronics, and information science. It addresses critical issues across device fabrication, circuit design, and intelligent algorithm integration. This paper systematically reviews recent advances in the core components of high-speed vision chips.
For high-speed sensor devices, the paper analyzes the physical mechanisms, structural innovations, and performance limitations of CMOS image sensors (CIS), dynamic vision sensors (DVS), and single-photon image sensors. High-speed CIS devices enhance temporal response by optimizing two fundamental aspects: charge transfer velocity and transfer path length. Gradient doping is employed to induce high-speed drift motion during charge transfer, while structural optimization based on physical device modeling shortens the transfer path, thereby enabling fast response. In contrast, DVS perform event-triggered readout when light intensity changes exceed a predefined threshold. This event-driven mechanism effectively removes static redundant information, producing only spike-based data that reflect brightness changes, achieving low latency and high temporal resolution. For single-photon detection, quantum image sensors based on CIS investigate noise origins and physical mechanisms, achieving ultra-low noise and extremely high conversion gain. Image sensors employing single-photon avalanche diodes (SPADs) leverage the avalanche effect to directly convert incident photons into pulse outputs, realizing high-speed and high-sensitivity single-photon detection. Furthermore, electric-field modulation enhances photogenerated charge collection and reduces temporal jitter, thereby improving timing precision in SPADs.
In terms of readout circuits, this paper reviews the architectures and optimization strategies for high-speed analog-to-digital converters (ADCs), address-event encoding, and time-correlated single-photon counting. To enhance conversion efficiency while minimizing chip area and power consumption, various ADC architectures have been developed. The successive approximation register (SAR) ADC has become a foundational solution owing to its high integration and low power characteristics. Hybrid architectures such as SAR/single-slope (SS) and pipeline–SAR combine the strengths of different schemes, effectively overcoming the area–resolution trade-offs inherent in conventional SAR ADCs. For DVS sensors, the address-event representation (AER) readout mechanism performs real-time detection of brightness variations and outputs them as asynchronous events, greatly enhancing image processing throughput while reducing storage and transmission demands. In SPAD-based sensors, on-chip integration of counting and histogram computation effectively alleviates the data throughput bottleneck associated with large-scale single-photon detection. These readout strategies, each tailored to the characteristics of their corresponding sensing mechanisms, collectively improve data conversion and transmission efficiency in high-speed imaging scenarios.
For intelligent processing, the primary objective is to efficiently extract information from sensor data and enable algorithmic intelligence. This process generally involves two stages: the reconstruction stage focuses on recovering high-quality image sequences from sparse spike streams, while the intelligent processing stage achieves high-speed semantic understanding through real-valued or spike-based computational architectures. By deeply integrating reconstruction and cognition at both algorithmic and hardware levels, end-to-end intelligent vision systems can simultaneously achieve high speed, low power consumption, and high accuracy. With ongoing technological convergence, multimodal vision chips integrating CIS, DVS, and SPAD architectures combine the advantages of different sensor modalities, offering more comprehensive perceptual capabilities for next-generation machine vision systems. Looking ahead, the continuous advancement of semiconductor fabrication technologies and novel materials, combined with the deep integration of multimodal sensing and heterogeneous computing paradigms, is expected to drive the evolution of high-performance, low-power, and intelligent vision chips.-
Keywords:
- High-Speed Vision Chip /
- CMOS Image Sensor /
- Spiking Image Sensor /
- High-Speed Spiking Processing
-
[1] Wu N J 2018 Sci. China Inf. Sci. 61 060421
[2] Mead C 1990 Proceedings of the IEEE 78 1629
[3] Ishikawa M, Ogawa K, Komuro T, Ishii I 1999 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 17, 1999 p206
[4] Shi C, Yang J, Han Y, Cao Z X, Qin Q, Liu L Y, Wu N J, Wang Z H 2014 IEEE J. Solid-State Circuits 49 2067
[5] Eki R, Yamada S, Ozawa H, Kai H, Okuike K, Gowtham H, Nakanishi H, Almog E, Livne Y, Yuval G, Zyss E, Izawa T 2021 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 13-22, 2021 p154
[6] Liao F, Zhou F and Chai Y 2021 J. Semicond. 42 013105
[7] Kang L 2023 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [康磊 2023 博士学位论文(北京:中国科学院大学)]
[8] Wojtkiewicz M, Rae B, Henderson R K 2024 IEEE Trans. Electron Devices 71 3470
[9] Bi Y H, Bian D J, Li M, Xu Y 2025 Chin. Phys. B 34 068501
[10] Kagawa K, Horio M, Pham A N, Ibrahim T, Okihara S, Furuhashi T, Takasawa T, Yasutomi K, Kawahito S, Nagahara H 2022 Sensors 22 1953
[11] Guo M H, Chen S S, Gao Z, Yang W L, Bartkovjak P, Qin Q, Hu X Q, Zhou D H, Uchiyama M, Kudo Y, Fukuoka S, Xu C C, Ebihara H, Wang A, Jiang P, Jiang B, Mu B, Chen H, Yang J, Dai T, Suess A 2023 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 19-23, 2023 p90
[12] Ulku A C, Bruschini C, Antolović I M, Kuo Y, Ankri R, Weiss S, Michalet X, Charbon E 2018 IEEE J. Sel. Topics Quantum Electron. 25 6801212
[13] Cao Z X 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [曹中祥 2014 博士学位论文(北京:中国科学院大学)]
[14] Inoue T, Takeuchi S, Kawahito S 2005 Proc. of SPIE Vol.5580 (Bellingham: SPIE) p293
[15] Fossum E R, Hondongwa D B 2014 IEEE J. Electron Devices Soc. 2 33
[16] Wegmann G, Vittoz E A, Rahali F 1987 IEEE J. Solid-State Circuits 22 1091
[17] Yonemoto K, Sumi H 2002 IEEE Trans. Electron Devices 49 746
[18] Shin B, Park S, Shin H 2010 Solid-State Electron. 54 1416
[19] Hu C Z, Zhang B, Xin Y Z, Xie Y Y, Hu P F, Geng L 2023 IEEE Sensors J. 23 14295
[20] Yin R T 2025 Master’s Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [尹若童 2025 硕士学位论文(北京:中国科学院大学)]
[21] Lee J, van Sieleghem E, Kim H, Genoe J 2022 IEEE Trans. Electron Devices 69 5603
[22] Teranishi N. 2016 IEEE Trans. Electron Devices 63 10
[23] Wang J H, Liu J, Xu Y, Jiang Y L, Wan J 2023 IEEE 15th International Conference on ASIC Nanjing, China, Oct 24-27, 2023 p1
[24] Gu C 2021 Master’s Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [顾超 2021 硕士学位论文(北京:中国科学院大学)]
[25] Yue X, Fossum E R 2023 Sensors 23 6356
[26] Suzuki M, Sugama Y, Kuroda R, Sugawa S 2020 Sensors 20 1086
[27] Dao V T S, Ngo N, Nguyen A Q, Morimoto K, Shimonomura K, Goetschalckx P, Haspeslagh L, Moor P D, Takehara K, Etoh T G 2018 Sensors 18 3112
[28] Wu L K, D. Bello D S S, Coppejans P, Craninckx J, Suss A, Rosmeulen M, Wambacq P, Borremans J 2018 Sensors 18 3683
[29] Etoh T G, Okinaka T, Takano Y, Takehara K, Nakano H, Shimonomura K, Ando T, Ngo N, Kamakura Y, Dao V T S, Nguyen A Q, Charbon E, Zhang C, Moor P D, Goetschalckx P, Haspeslagh L 2019 Sensors 19 2247
[30] Kramer J 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No. 02CH37353) Phoenix-Scottsdale, AZ, USA, May 26-29, 2002 p165
[31] Ryu H E 2019 Conf. on Computer Vision and Pattern Recognition Long Beach, CA, USA, Jun 16-20, 2019
[32] Suh Y, Choi S, Ito M, Kim J, Lee Y, Seo J, Jung H, Yeo D H, Namgung S, Bong J, Yoo S, Shin S H, Kwon D, Kang P, Kim S, Na H, Hwang K, Shin C, Kim J S, Park P K J, Kim J, Ryu H, Park Y 2020 IEEE International Symposium on Circuits and Systems Seville, Spain, Oct 12-14, 2020 p1
[33] Gao Z Y, Zhang D, Shi X P, He Y H, Xu J T 2025 Int. J. Circ. Theor. Appl. 53 1833
[34] Zhang H H 2025 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [章宦慧 2025 博士学位论文(北京:中国科学院大学)]
[35] Kleinfelder S, Lim S H, Liu X, Gamal A E 2001 IEEE J. Solid-State Circuits 36 2049
[36] Zhang H H, Zhang C, Yang X, Wang Z, Shi C, Dou R J, Yu S M, Liu J, Wu N J, Feng P, Liu L Y 2025 J. Semicond. 46 092201
[37] Fossum E R. 2011 Computational Optical Sensing and Imaging Toronto, Canada, July 10-14, 2011
[38] Ma J, Fossum E R. 2015 IEEE J. Electron Devices Soc. 3 73
[39] Ma J, Zhang D X, Elgendy O A, Masoodian S 2021 IEEE Electron Device Lett. 42 891
[40] Tian N 2024 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [田娜 2024 博士学位论文(北京:中国科学院大学)]
[41] Morimoto K, Iwata J, Shinohara M, Sekine H, Abdelghafar A, Tsuchiya H, Kuroda Y, Tojima K, Endo W, Maehashi Y, Ota Y, Sasago T, Maekawa S, Hikosaka S, Kanou T, Kato A, Tezuka T, Yoshizaki S, Ogawa T, Uehira K, Ehara A, Inui F, Matsuno Y, Sakurai K, Ichikawa T 2021 IEEE International Electron Devices Meeting San Francisco, CA, USA, Dec 11-16, 2021 p450
[42] Ito K, Otake Y, Kitano Y, Matsumoto A, Yamamoto J, Ogasahara T, Hiyama H, Naito R, Takeuchi K, Tada T, Takabayashi K, Nakayama H, Tatani K, Hirano T, Wakano T 2020 IEEE International Electron Devices Meeting San Francisco, CA, USA, Dec 12-18, 2020 p347
[43] Fujisaki Y, Tsugawa H, Sakai K, Kumagai H, Nakamura R, Ogita T, Endo S, Iwase T, Takase H, Yokochi K, Yoshida S, Shimada S, Otake Y, Wakano T, Hiyama H, Hagiwara K, Arakawa M, Matsumoto S, Maeda H, Sugihara K, Takabayashi K, Ono M, Ishibashi K, Yamamoto K 2023 IEEE Symposium on VLSI Technology and Circuits Kyoto, Japan, Jun 11-16, 2023 p1
[44] Ogi J, Kitamura S, Sugaya F, Suzuki J, Magori A, Matsui T, Sumita K, Ushiku Y, Moriyama K, Toshima K, Namise T, Ozawa H, Tsukuda Y, Otake Y, Hiyama H, Matsumoto S, Suzuki A, Koga F 2024 IEEE International Electron Devices Meeting San Francisco, CA, USA, Dec 7-11, 2024
[45] Matsuo S, Bales T J, Shoda M, Osawa S, Kawamura K, Andersson A, Haque M, Honda H, Almond B, Mo Y, Gleason J, Chow T, Takayanagi I 2009 IEEE Trans. Electron Devices 56 2380
[46] Li Q L 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [李全良 2014 博士学位论文(北京:中国科学院大学)]
[47] Maloberti F 2007 Data converters (The Netherlands: Springer) p178-182
[48] Lee K, Song M, Kim S Y 2025 IEEE International Symposium on Circuits and Systems London, United Kingdom, May 25-28, 2025
[49] Zhang W Z 2025 Master’s Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [张伟哲 2025 硕士学位论文(北京:中国科学院大学)]
[50] Lim S, Lee J, Kim D, Han G 2009 IEEE Trans. Electron Devices 56 393
[51] Byun S J, Seo J T, Kim T H, Lee J H Kim Y K Baek K H 2024 Electronics 14 1
[52] Lee C C, Flynn M P 2011 IEEE J. Solid-State Circuits 46 859
[53] Hao J Y, Shen Y, Zhang J, Zhang Y B, Liu S B, Zhu Z M 2024 IEEE Trans. Circuits Syst. II: Exp. Briefs 71 16
[54] Kainuma T, Wakamatsu R, Wada K, Takeda T, Ueyama S, Suto H, Miura T, Uemura K, Kimura M, Sakakibara M, Oike Y 2025 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 16-20, 2025 p122
[55] Takatsuka T, Ogi J, Ikeda Y, Hizu K, Inaoka Y, Sakama S, Watanabe I, Ishikawa T, Shimada S, Suzuki J, Maeda H, Toshima K, Nonaka Y, Yamamura A, Ozawa H, Koga F, Oike Y 2024 IEEE J. Solid-State Circuits 59 1137
[56] Sesta V, Incoronato A, Madonini F, Villa F 2023 Measurement 212 112705
[57] Yui T, Hanzawa K, Hosoya M, Liu Y, Yasufuku T, Tanaka Y, Tashiro Y, Tumewu A, Yamane M, Shibata M, Sakada T, Akatsuka K, Matsushita Y, Yamada K, Mori K, Toyoshima T, Sakano Y, Kumagai O, Tsunoji K, Takahashi M 2025 Symposium on VLSI Technology and Circuits Kyoto, Japan, Jun 8-12, 2025 p1
[58] Zhu L, Dong S W, Huang T J, Tian Y H 2019 Proceedings of 2019 IEEE International Conference on Multimedia and Expo. Shanghai, China, July 08-12, 2019 p1432
[59] Zhao J, Xiong R Q, Huang T J 2020 Proceedings of 2020 IEEE International Symposium on Circuits and Systems Seville, Spain, Oct 12-14, 2020
[60] Zheng Y J, Zheng L X, Yu Z F, Shi B X, Tian Y H, Huang T J 2021 Proceedings of 2021 IEEE Conference on Computer Vision and Pattern Recognition Nashville,USA, Jun 20-25, 2021 p6354
[61] Zhao J, Xie J Y, Xiong R Q, Zhang J, Yu Z F, Huang T J 2021 Proceedings of 2021 IEEE International Conference on Computer Vision Montreal, Canada, Oct 10-17, 2021 p2513
[62] Zhu L, Li J N, Wang X, Huang T J, Tian Y H 2021 Proceedings of 2021 IEEE International Conference on Computer Vision Montreal, Canada, Oct 10-17, 2021 p2380
[63] Ma S, Gupta S, Ulku A C, Bruschini C, Charbon E, Gupta M 2020 ACM Trans. Graph. 39 79
[64] Seets T, Ingle A, Laurenzis M, Velten A 2021 Proceedings of the IEEE Winter Conference on Applications of Computer Vision Jan 5-9, 2021 p1944
[65] Muglikar M, Somasundaram S, Dave A, Charbon E, Raskar R, Scaramuzza D 2025 IEEE Trans. Pattern Anal. Mach. Intell. 47 7886
[66] Chai Y, Liao F 2022 Near-sensor and In-sensor Computing (Chapter 5) (Switzerland: Springer) p81–119
[67] Komuro T, Kagami S, Ishikawa M 2004 IEEE J. Solid-State Circuits 39 265
[68] Xu H, Lin N C, Luo L, Wei Q, Wang R S, Zhou C, Yin X Z, Qiao F, Yang H Z 2021 IEEE Trans. Circuits Syst. I: Reg. Papers 69 232
[69] Datta G, Kundu S, Yin Z, Lakkireddy R T, Mathai J, Jacob A P, Beerel P A, Jaiswal A R 2022 Scientific Reports 12 14396
[70] Kaiser M A, Datta G, Wang Z X, Jacob A P, Beerel P A, Jaiswal A R 2023 Front. Neuroinform. 17 1144301
[71] Lee D, Park M, Baek Y, Bae B, Heo J, Lee K 2022 Nat. Commun. 13 5223
[72] Bong K, Chio S, Kim C, Han D, Yoo H J 2018 IEEE J. Solid-State Circuits 53 115
[73] Yang X, Yao C H, Kang L, Luo Q, Qi N, Dou R J, Yu S M, Feng P, Wei Z M, Liu J, Wang K Y, Wu N J, Liu L Y 2024 IEEE J. Solid-State Circuits 59 1883
[74] Yang X, Lei F M, Tian N, Shi C, Wang Z, Yu S M, Dou R J, Feng P, Qi N, Wei Z M, Liu J, Wang K Y, Wu N J, Liu L Y 2025 IEEE J. Solid-State Circuits (Early Access)
[75] Zhao M X, Peng J B, Yu S M, Liu L Y, Wu N J 2022 IEEE Trans. Circuits Syst. Video Technol. 32 1658
[76] Zhang C, Yang X, Yu S M, Dou R J, Liu L Y 2025 IEEE Signal Process. Lett. 32 976
[77] Wang T, Wen J, Lv K, Chen J Z, Wang L, Guo X 2022 Acta Phys. Sin. 71 148702(in Chinese) [王童, 温娟, 吕康, 陈健中, 汪亮, 郭新 2022 71 148702]
[78] Jiang B Y, Zhou F C, Chai Y 2022 Acta Phys. Sin. 71 148504(in Chinese) [江碧怡, 周菲迟, 柴扬 2022 71 148504]
[79] Tsai T H, Chang K H, Berkovich A, Capoccia R, Chen S, Wang Z, Liu C, Lin Y H, Lai S Y, Hsu H M, Abe H, Mori K, Fukuhara H, Lin C H, Isozaki T, Li WC, Chou W F, Uno M, Ikeno R, Nagamatsu M, Yang G, Wuu S G, Bainbridge L 2025 IEEE International Solid-State Circuits Conference San Francisco, CA, USA, Feb 16-20, 2025 p120
计量
- 文章访问数: 36
- PDF下载量: 1
- 被引次数: 0








下载: