搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SH+离子18个Λ-S态和35个Ω态光谱性质的理论研究

邢伟 李胜周 张昉 孙金锋 李文涛 朱遵略

引用本文:
Citation:

SH+离子18个Λ-S态和35个Ω态光谱性质的理论研究

邢伟, 李胜周, 张昉, 孙金锋, 李文涛, 朱遵略

Theoretical investigation on spectroscopic properties of 18 Λ-S and 35 Ω states of the SH+ ion

Xing Wei, Li Sheng-Zhou, Zhang Fang, Sun Jin-Feng, Li Wen-Tao, Zhu Zun-Lüe
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 基于精确处理核–价电子关联、标量相对论效应、自旋–轨道耦合效应及完全基组极限等多种物理效应, 本文使用icMRCI+Q方法构建了SH+离子18个Λ-S态及相应的35个Ω态的势能曲线. 利用全电子icMRCI/cc-pCV5Z+SOC理论框架, 计算得到7个Ω态[包括${\rm{X}}{}^3{\rm{\Sigma }}_{{0^{\rm{ + }}}}^{\rm{ - }}$, ${\rm{X}}{}^3{\rm{\Sigma }}_1^{\rm{ - }}$,(1)2第一势阱(υ'=0–8), (2)0+(υ'=0–5), (2)2第一势阱(υ'=0–2), (2)1第一势阱(υ'=0–2)和(3)0+(υ'=0–2)]间12对系统的跃迁偶极距曲线. 基于上述势能曲线和跃迁偶极距曲线, 通过求解核运动的Schrödinger方程并结合相应公式,确定了各态的光谱数据和Ω态间的跃迁数据, 所得结果与实验值吻合很好. 此外阐明了12对辐射跃迁的光谱特性、揭示了激发Ω态的辐射寿命和辐射宽度变化规律、讨论了转动量子数(J')对(2)2第一势阱(υ'=0−2, +), (2)1第一势阱(υ'=0–2, +)和(3)0+(υ'=0–2, +)态的辐射寿命的影响. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00233中访问获取. (数据集私有访问链接https://www.scidb.cn/s/nMziqa)
    On the basis of precisely treating various physical effects—including core-valence electron correlation, scalar relativistic, spin-orbit coupling, and extrapolation to the complete basis set limit, this study constructs the potential energy curves of 18 Λ-S states and the corresponding 35 Ω states of the SH+ ion by means of the optimized icMRCI+Q method. Within the all-electron icMRCI/cc-pCV5Z+SOC theoretical framework, the transition dipole moment curves of 12 pairs of transitions between 7 Ω states[including X3Σ-0+, X3Σ-1, (1)21st well(υ'=0–8), (2)0+(υ'=0–5), (2)21st well(υ'=0–2), (2)11st well(υ'=0–2), and (3)0+(υ'=0–2)] are calculated. Based on the aforementioned potential energy curves and transition dipole moment curves, the spectral data of each state and the transition data between Ω states are determined by solving the Schrödinger equation for nuclear motion and combining with the corresponding formulas, and the obtained results are in excellent agreement with the experimental values. In addition, the spectral characteristics of the 12 pairs of radiative transitions are clarified, the variation laws of the radiative lifetimes(τυ'J') and radiation widths(Γr) of the excited Ω states are revealed, and the influence of the rotational quantum number(J') on the radiative lifetimes(τυ'J') of the (2)21st well(υ'=0−2, +), (2)11st well(υ'=0–2, +), and (3)0+(υ'=0–2, +) states is discussed. The datasets presented in this paper, including the potential energy curves of 18 Λ-S and 35 Ω states, 12 pairs of transition dipole moments between the 7 Ω states[X3Σ-0+, X3Σ-1,(1)21st well(υ'=0–8), (2)0+(υ'=0–5), (2)21st well(υ'=0–2), (2)11st well(υ'=0–2), and (3)0+(υ'=0–2)], and variation of the radiative lifetimes(τυ'J') with J' for the (2)21st well(υ'=0−2, +), (2)11st well(υ'=0–2, +), and (3)0+(υ'=0–2, +) states of SH⁺ ion, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00233. (Data private access link https://www.scidb.cn/s/nMziqa)
  • [1]

    McGuire B A 2022 Astrophys. J. Suppl. S. 259 30

    [2]

    Benz A O, Bruderer S, van Dishoeck E F, Stäuber P, Wampfler S F, Melchior M, Dedes C, Wyrowski F 2010 Astron. Astrophys. 521 L35

    [3]

    Godard B, Falgarone E, Gerin M, Lis D C, De Luca M, Black J H, Goicoechea J R, Cernicharo J, Neufeld D A, Menten K M, Emprechtinger M 2012 Astron. Astrophys. 540 A87

    [4]

    Möller T, Schilke P, Schmiedeke A, Bergin E A, Lis D C, Sánchez-Monge Á, Schwörer A, Comito C 2021 Astron. Astrophys. 651 A9

    [5]

    Müller H S P, Goicoechea J R, Cernicharo J, Agúndez M, Pety J, Cuadrado S, Gerin M, Dumas G, Chapillon E 2014 Astron. Astrophys. 569 L5

    [6]

    Muller S, Müller H S P, Black J H, Gérin M, Combes F, Curran S, Falgarone E, Guélin M, Henkel C, Martín S, Menten K M, Roueff E, Aalto S, Beelen A, Wiklind T, Zwaan M A 2017 Astron. Astrophys. 606 A109

    [7]

    Savage C, Apponi A J, Ziurys L M 2004 Astrophys. J. 608 L73

    [8]

    Halfen D T, Ziurys L M 2015 Astrophys. J. 814 119

    [9]

    Hovde D C, Saykally R J 1987 J. Chem. Phys. 87 4332

    [10]

    Brown P R, Davies P B, Johnson S A 1986 Chem. Phys. Lett. 132 582

    [11]

    Civiš S, Blom C E, Jensen P 1989 J. Mol. Spectrosc. 138 69

    [12]

    Milan J B, Buma W J, De Lange C A 1996 J. Chem. Phys. 104 521

    [13]

    Milan J B, Buma W J, De Lange C A 1996 J. Chem. Phys. 105 6688

    [14]

    Rostas J, Horani M, Brion J, Daumont D, Malicet J 1984 Mol. Phys. 52 1431

    [15]

    Horani M, Rostas J, Roueff E 1985 Astron. Astrophys. 142 346

    [16]

    Edwards C P, Maclean C S, Sarre P J 1984 Mol. Phys. 52 1453

    [17]

    Brzozowski J, Elander N, Erman P, Lyyra M 1974 Phys. Scr. 10 241

    [18]

    Gustafsson O, Larsson M, Sigray P 1988 Z. Phys. D - Atoms, Molecules and Clusters 7 373

    [19]

    Levick A P, Sarre P J 1989 J. Mol. Spectrosc. 133 227

    [20]

    Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13

    [21]

    Senekowitsch J, Werner H J, Rosmus P, Reinsch E A, Oneil S V 1985 J. Chem. Phys. 83 4661

    [22]

    Park J K, Sun H 1992 Chem. Phys. Lett. 194 485

    [23]

    González-Luque R, Merchán M, Roos B O 1992 Mol. Phys. 76 201

    [24]

    Stancil P C, Kirby K, Gu J P, Hirsch G, Buenker R J, Sannigrahi A B 2000 Astron. Astrophys. Suppl. Ser. 142 107

    [25]

    Shi D H, Zhang J P, Liu Y F, Sun J F, Zhu Z L 2009 Int. J. Quantum. Chem. 109 1159

    [26]

    Zanchet A, Lique F, Roncero O, Goicoechea J R, Bulut N 2019 Astron. Astrophys. 626 A103

    [27]

    Zanchet A, Agúndez M, Herrero V J, Aguado A, Roncero O 2013 Astrophys. J. 146 125

    [28]

    McMillan E C, Shen G, McCann J F, McLaughlin B M, Stancil P C 2016 J. Phys. B: At. Mol. Opt. Phys. 49 084001

    [29]

    Song Y Z, Zhang Y, Gao S B, Meng Q T, Wang C K, Ballester M Y 2018 Mol. Phys. 116 129

    [30]

    Zhu Z L, Zhang A J, He D, Li W T 2021 Phys. Chem. Chem. Phys. 23 4757

    [31]

    Khadri F, Ndome H, Lahmar S, Lakhdar Z B, Hochlaf M 2006 J. Mol. Spectrosc. 237 232

    [32]

    Liu X Y, Yang C L, Wang M S, Ma X G, Liu W W 2012 Comput. Theor. Chem. 979 44

    [33]

    Xiao Z Y, Ren X Y, Liu Y, Yan B 2021 J. Quant. Spectrosc. Ra. 267 107624

    [34]

    MOLPRO, version 2010.1, a package of ab initio programs, Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M http://www.molpro.net [2025-10-19]

    [35]

    Li R, Dou R L, Gao T, Li Q N, Song C Q 2025 Acta Phys. Sin. 74 123102(in Chinese) [李瑞, 窦荣龙, 高婷, 李奇楠, 宋超群2025 74 123102]

    [36]

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101 (in Chinese) [邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 71 103101]

    [37]

    Xing W, Li S Z, Sun J F, Cao X, Zhu Z L, Li W T, Li Y Y, Bai C X 2023 Acta Phys. Sin. 72 163101 (in Chinese) [邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭 2023 72 163101]

    [38]

    Xing W, Li S Z, Zhang F, Sun J F, Li W T, Zhu Z L 2024 Acta Phys. Sin. 73 223101 (in Chinese) [邢伟, 李胜周, 张昉, 孙金锋, 李文涛, 朱遵略2024 73 223101]

    [39]

    Kendall R A, Dunning Jr T H, Harrison R J 1992 J. Chem. Phys. 96 6796

    [40]

    Dunning Jr T H, Peterson K A, Wilson A K 2001 J. Chem. Phys. 114 9244

    [41]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [42]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [43]

    de Jong WA, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [44]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [45]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [46]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548

    [47]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [48]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167

    [49]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559

  • [1] 温静, 孙帅, 曹李刚, 张丰收. 双Λ超核同位旋标量巨共振性质的相对论研究.  , doi: 10.7498/aps.73.20231531
    [2] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论.  , doi: 10.7498/aps.72.20222470
    [3] 浦实, 黄旭光. 相对论自旋流体力学.  , doi: 10.7498/aps.72.20230036
    [4] 万明杰, 柳福提, 黄多辉. 考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质.  , doi: 10.7498/aps.70.20201413
    [5] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , doi: 10.7498/aps.70.20210450
    [6] 刘震, 杨晓超, 张效信, 张珅毅, 余庆龙, 张鑫, 薛炳森, 郭建广, 宗卫国, 沈国红, 白超平, 周平, 冀文涛. 风云四号A星和GOES-13相对论电子观测数据在轨交叉定标及数据融合研究.  , doi: 10.7498/aps.68.20190433
    [7] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究.  , doi: 10.7498/aps.67.20172409
    [8] 王文宝, 于坤, 张晓美, 刘玉芳. 从头计算研究BP分子的势能曲线和光谱性质.  , doi: 10.7498/aps.63.073302
    [9] 张宝龙, 王东红, 杨致, 刘瑞萍, 李秀燕. 合金团簇(FeCr)n中的非共线磁序和自旋轨道耦合效应.  , doi: 10.7498/aps.62.143601
    [10] 刘尚宗, 颉录有, 丁晓彬, 董晨钟. 相对论效应对类锂离子能级结构及辐射跃迁性质的影响.  , doi: 10.7498/aps.61.093106
    [11] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , doi: 10.7498/aps.59.925
    [12] 谭明亮, 朱正和, 赵永宽, 陈晓峰. 类铜Au50+精细结构能级和光谱跃迁的相对论多组态计算.  , doi: 10.7498/aps.45.1609
    [13] 屈一至, 仝晓民, 李家明. 电子与原子、离子碰撞过程的相对论效应.  , doi: 10.7498/aps.44.1719
    [14] 王宛珏. 类氮KⅩⅢ,CaⅪⅤ,ScⅩⅤ和TiⅩⅥ精细结构能级和跃迁波长的相对论多组态Dirac-Fock计算.  , doi: 10.7498/aps.41.726
    [15] 马锦秀, 盛政明, 徐至展. 相对论效应对共振吸收的影响.  , doi: 10.7498/aps.41.253
    [16] 赵中新, 李家明. 非相对论性和相对论性原子组态相互作用理论——激发能量和辐射跃迁几率.  , doi: 10.7498/aps.34.1469
    [17] 章立源. 标量相对论近似下格林函数能带计算法.  , doi: 10.7498/aps.30.1122
    [18] 朱世昌. 广义相对论中自转球体的引力质量亏损和转动质量效应.  , doi: 10.7498/aps.28.894
    [19] 郭汉英, 吴詠时, 李根道. 广义相对论的旋量和复矢量形式.  , doi: 10.7498/aps.23.5
    [20] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象.  , doi: 10.7498/aps.21.1927
计量
  • 文章访问数:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-26

/

返回文章
返回
Baidu
map