搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理的钴扩散对氢封端金刚石(100)表面沉积的影响

刘嘉乐 韩杨 简小刚

引用本文:
Citation:

基于第一性原理的钴扩散对氢封端金刚石(100)表面沉积的影响

刘嘉乐, 韩杨, 简小刚

The Impact of Cobalt Diffusion on the Deposition of Hydrogen-Terminated Diamond (100) Surface Based on First-Principles Calculations

LIU Jiale, HAN Yang, JIAN Xiaogang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文采用基于密度泛函理论的第一性原理计算,研究了Co的扩散对氢封端金刚石( 100)表面沉积的影响。通过构建不同层含Co的氢封端金刚石( 100)表面模型,模拟了金刚石沉积过程中的脱氢反应和碳氢基团吸附反应。计算结果显示:当基底中含Co时,脱氢反应的能垒显著提高,反应难度相应增加,且提高的幅度和表面H原子与Co原子在基底表面的投影之间的距离DCo-H在一定范围内呈正相关; Co越接近表面,脱氢反应的能垒也会越高,但这种影响显著小于DCo-H对能垒的影响; CH3在活性位点处的吸附能相比不含Co时提高,CH2和CH的吸附能随着Co所在层数的不同而各不相同,这种影响使得金刚石生长过程中的主要碳氢基团CH3更难吸附,从而降低金刚石沉积的质量。
    This study aims to elucidate the influence of cobalt (Co) diffusion on the chemical vapor deposition (CVD) process of hydrogen-terminated diamond (100) surfaces, with a particular focus on the effects on dehydrogenation reactions and the adsorption behaviors of critical carbon-hydrogen (C-H) groups.Currently, pretreatment methods are commonly employed to remove cobalt from the substrate in order to mitigate its effects during diamond deposition. However, these methods tend to reduce the substrate's toughness and increase preparation costs. Moreover, even when cobalt is partially removed, some of it within the substrate can still diffuse to the film-substrate interface and into the diamond film during the deposition process, thereby compromising the quality of the diamond film.The primary objective of this study is to investigate, at the atomic scale, how cobalt atoms diffusing into the diamond substrate affect the key reactions during diamond growth—specifically, dehydrogenation and C-H group adsorption. Understanding these effects is crucial for developing strategies to mitigate cobalt's adverse impact on diamond deposition.Using first-principles calculations based on density functional theory (DFT), we constructed geometric models of single-crystal diamond and its (100) surface. Co atoms were introduced at various diffusion depths (ranging from the 2nd to the 5th layer beneath the diamond surface), and the surfaces were hydrogen-terminated to mimic experimental conditions.The Dmol3 module in Materials Studio was employed to simulate and analyze the energy barriers for dehydrogenation reactions and the adsorption energies of key C-H groups, which include CH, CH2, CH3.Transition state searches were performed to determine reaction pathways and energy profiles, while adsorption energies were calculated to assess the stability of C-H group binding at active sites.The presence of Co significantly elevated the energy barriers for dehydrogenation reactions.The magnitude of this increase was positively correlated with the projected distance (DCo-H) between surface H atoms and Co atoms.Additionally, while the number of layers separating Co from the surface also influenced the energy barrier, this effect was less pronounced compared to DCo-H.Co diffusion altered the adsorption energies of C-H groups, particularly increasing the adsorption energy of CH3—a pivotal group in diamond growth.This resulted in reduced adsorption efficiency of CH3, thereby degrading the quality of diamond deposition. The impact varied with Co's diffusion depth: at the 2nd layer, all C-H groups exhibited increased adsorption energies, indicating thermodynamic instability; at deeper layers (3rd to 5th), CH3 consistently showed higher adsorption energies compared to Co-free conditions, while CH and CH2 exhibited more complex behaviors with some layers showing decreased adsorption energies.Our findings provide crucial insights into the atomic-scale mechanisms by which cobalt affects diamond CVD.The significant elevation of dehydrogenation energy barriers and the altered adsorption behaviors of C-H groups, especially CH3, underscore the challenges in depositing high-quality diamond films on WC-Co substrates.These results guide the development of strategies to mitigate cobalt's adverse effects, such as through optimized substrate pretreatments or barrier layer insertions, ultimately enhancing diamond film quality on cobalt-containing substrates.
  • [1]

    Yang W X, Ni X N, Hu Z J, Deng X, Wu S H, Liu J Y 2025 Compos. Commun. 59 102568

    [2]

    Banik S, Indhu R, Arunachalam N, Rao M S R 2025 Diam. Relat. Mater. 154 112240

    [3]

    Li Q L, Tan Z D, Ding S, Liu W, Chen J J, Shan D P, Ding K, Han J J, Ge Y 2025 Ceram. Int. 51 47395

    [4]

    Hao J P, Zhang Y J, Tian Z, Li N, Dai J J, Wu Y, Wang X T, Zhang H L 2025 J. Alloys Compd. 1037 182208

    [5]

    Hu J B, Jian X G 2022 Mod. Phys. Lett. B 36 2250086

    [6]

    Buck V, Deuerler F, Kluwe H, Schmiler B 2022 Int. J. Refract. Met. Hard Mat. 20 101

    [7]

    Donnet J B, Paulmier D, Oulanti H, Huu T L 2004 Carbon 42 2215

    [8]

    Tan S C, Yang Y, Fang X H, Zhao X J, Duan L C, Hu Y L 2025 Int. J. Refract. Met. Hard Mat. 130 107136

    [9]

    Li X J, He L L, Li Y S, Yang Q 2019 Surf. Coat. Technol. 360 20

    [10]

    Prieske M, Müller S, Woizeschke P 2019 Coatings 9 537

    [11]

    Mehlmann A K, Dirnfeld S F, Avigal Y 1992 Diam. Relat. Mater. 1 600

    [12]

    Pan F M, Chen J L, Chou T, Lin T S, Chang L 1994 J. Vac. Sci. Technol. A 12 1519

    [13]

    Sarangi S K, Chattopadhyay A, A.K. Chattopadhyay 2008 Appl. Surf. Sci. 254 3721

    [14]

    Liu N, Lei L, Jiang H L, Zhang Y J, Xiao J F, Zhang J G, Chen X, Xu J F, Yamamura K 2024 J. Mater. Process. Technol. 332 118578

    [15]

    Tang W, Wang Q, Wang S, Lu F 2002 Surf. Coat. Technol. 153 298

    [16]

    Hojman E, Akhvlediani R, Alagem E, Hoffman A 2012 Phys. Status Solidi A 209 1726

    [17]

    X.C. Wang, C.C. Wang, W.K. He, F.H. Sun 2018 Trans. Nonferrous Met. Soc. China 28 469

    [18]

    Qiao Y, Nie S Y, Li W H, Liu E Z, Wang X C 2023 Appl. Surf. Sci. 633 157589

    [19]

    ZHANG Y Y 2024 Exploration of CVD Diamond Homo/Heteroepitaxial Growth Mechanisms and Defect Analysis Ph.D. Dissertation (Wuhan: Huazhong University of Science and Technology)

    [20]

    Ma M Y, Yu C, He Z Z, Guo J C, Liu Q B, Feng Z H 2024 Acta. Phys. Sin. 73 088101

    [21]

    Kawarada H 1996 Surf. Sci. Rep. 26 205

    [22]

    Taranenko P A, Khan A 2022 Diam. Relat. Mater. 124 108900

    [23]

    Zhu P, Zhang Q, Gou H S, Wang P P, Shao P Z, Kobayashi E, Wu G H 2021 Acta. Phys. Sin. 70 178101

    [24]

    Jian X G, Zhang, T T, Tang W J 2025 Acta. Phys. Sin. 74 220

    [25]

    Hu J B, Jian X G, Yang T, Peng X Y 2022 Diam. Relat. Mater. 123 108864

  • [1] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究.  , doi: 10.7498/aps.73.20231681
    [2] 祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉. 金刚石/铝复合材料界面性质第一性原理计算及界面反应.  , doi: 10.7498/aps.70.20210341
    [3] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究.  , doi: 10.7498/aps.70.20210572
    [4] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性.  , doi: 10.7498/aps.69.20200395
    [5] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究.  , doi: 10.7498/aps.66.246801
    [6] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究.  , doi: 10.7498/aps.66.086801
    [7] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究.  , doi: 10.7498/aps.65.236802
    [8] 王应, 李勇, 李宗宝. B,N协同掺杂金刚石电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.65.087101
    [9] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , doi: 10.7498/aps.64.013101
    [10] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究.  , doi: 10.7498/aps.62.206102
    [11] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , doi: 10.7498/aps.62.167502
    [12] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , doi: 10.7498/aps.62.077101
    [13] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , doi: 10.7498/aps.61.047101
    [14] 杜玉杰, 常本康, 王晓晖, 张俊举, 李飙, 付小倩. Cs/GaN(0001)吸附体系电子结构和光学性质研究.  , doi: 10.7498/aps.61.057102
    [15] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究.  , doi: 10.7498/aps.61.148801
    [16] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响.  , doi: 10.7498/aps.60.116102
    [17] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究.  , doi: 10.7498/aps.59.4170
    [18] 吴小霞, 王乾恩, 王福合, 周云松. Cl原子在γ-TiAl(111)表面吸附的第一性原理研究.  , doi: 10.7498/aps.59.7278
    [19] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构.  , doi: 10.7498/aps.59.6556
    [20] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数.  , doi: 10.7498/aps.58.1924
计量
  • 文章访问数:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-27

/

返回文章
返回
Baidu
map