搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EuS/InAs/GaInSb异质结构中磁近邻效应的输运证据

贾佩哲 张文锋 杜瑞瑞

引用本文:
Citation:

EuS/InAs/GaInSb异质结构中磁近邻效应的输运证据

贾佩哲, 张文锋, 杜瑞瑞

Transport evidence for magnetic proximity effect in EuS/InAs/GaInSb heterostructure

JIA Peizhe, ZHANG Wenfeng, DU Rui-Rui
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 拓扑材料近年来得到了飞速的发展,利用铁磁材料对其进行磁近邻作为通向拓扑量子计算道路中的重要一环,持续吸引着凝聚态物理学界的关注. 本实验利用电子束蒸镀的手段在二维拓扑绝缘体InAs/GaInSb双量子阱表面生长铁磁绝缘体硫化铕(EuS),形成铁磁绝缘体/二维拓扑绝缘体(EuS/InAs/GaInSb)异质结构并制作霍尔器件,在低温下进行了系统的输运测量. 实验中发现,随着InAs中电子波函数的空间分布趋近EuS,EuS对其的磁近邻效应逐渐增强. 表现为霍尔器件在垂直磁场下的奇宇称磁阻的斜率逐渐增大,零场附近的正磁阻会向负磁阻转变,同时,平行磁场下的负磁阻效应亦会随之变强.结合电阻-温度曲线在低温段(低于20K)符合近藤效应的电阻上升行为,本文分析并得出InAs中电子气在磁场下的负磁阻可以解释为由近藤效应而引起的结论. 综合实验数据和分析,本工作给出了InAs/GaInSb中电子被EuS磁近邻的输运证据.
    Magnetic proximity effects (MPE) are crucial for topological quantum devices because they enable control of boundary states between a ferromagnetic insulator and a topological insulator. The InAs/GaInSb double quantum well system—especially when combined with a superconductor and influenced by MPE—shows promise for producing topological qubits. Nonetheless, researchers still debate the exact strength of the MPE between europium sulfide (EuS) and InAs.
    To directly probe the MPE, this work focuses on a EuS/InAs/GaInSb heterostructure. The heterostructure was fabricated by depositing EuS onto the passivated surface of a Hall bar formed from an InAs/GaInSb double quantum well, utilizing an electron beam evaporation system. Structural analysis using Reflection High-Energy Electron Diffraction and magnetic measurements revealed that, although the resulting EuS thin films were polycrystalline, they nonetheless displayed desired magnetic properties, making them suitable for further study of MPE phenomena.
    Low-temperature magnetoresistance measurements on the fabricated Hall bar revealed several key phenomena that collectively provide evidence for the MPE. Application of a positive gate voltage caused the electron wavefunction within the InAs layer to shift toward the EuS interface, thereby enhancing the MPE. Under a perpendicular magnetic field, the magnetoresistance exhibited an increasing slope for the odd-parity component. Additionally, a transition from positive to negative magnetoresistance near zero field was observed. When an in-plane magnetic field was applied, a gate-enhanced negative magnetoresistance emerged. Hysteretic magnetoresistance, corresponding to the reversal of EuS magnetization, was also detected during these measurements.
    The resistance-temperature curve for the heterostructure displayed a pronounced upturn at low temperatures. This behavior was well described by the Kondo model, indicating the presence of exchange coupling between InAs electrons and the localized magnetic moments of EuS near the interface. Such coupling is a strong indicator of the magnetic proximity effect at work in the system.
    These findings collectively demonstrate the existence of a gate-tunable MPE in the EuS/InAs/GaInSb heterostructure. The ability to control the MPE through gate voltage establishes this heterostructure as a compelling platform for the exploration of proximity-induced magnetism. Furthermore, these results underscore the potential applications of such systems in the development of spin-based electronic devices and highlight their significance for future research in topological quantum computing.
  • [1]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [2]

    Filip A T, LeClair P, Smits C J P, Kohlhepp J T, Swagten H J M, Koopmans B, de Jonge W J M 2002 Appl. Phys. Lett. 81 1815

    [3]

    Gomez-Perez J M, Zhang X-P, Calavalle F, Ilyn M, González-Orellana C, Gobbi M, Rogero C, Chuvilin A, Golovach V N, Hueso L E, Bergeret F S, Casanova F 2020 Nano Lett. 20 6815

    [4]

    Muduli P K, Leo N, Xu M, Zhu Z, Puebla J, Ortiz Pauyac C, Isshiki H, Otani Y 2025 J. Phys. D: Appl. Phys. 58 285003

    [5]

    Lu J, Gan Y-L, Lei Y-L, Yan L, Ding H 2020 Chinese Phys. B 29 117503

    [6]

    Qi X-L, Zhang S-C 2011 Rev. Mod. Phys. 83 1057

    [7]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Alicea J 2012 Rep. Prog. Phys. 75 076501

    [9]

    Du R-R 2023 Sci. China-Phys. Mech. Astron. 66 267006

    [10]

    Wolf M J, Sürgers C, Fischer G, Scherer T, Beckmann D 2014 J. Magn. Magn. Mater. 368 49

    [11]

    Yang Q I, Zhao J, Zhang L, Dolev M, Fried A D, Marshall A F, Risbud S H, Kapitulnik A 2014 Appl. Phys. Lett. 104 082402

    [12]

    Hao X, Moodera J S, Meservey R 1990 Phys. Rev. B 42 8235

    [13]

    Li B, Roschewsky N, Assaf B A, Eich M, Epstein-Martin M, Heiman D, Münzenberg M, Moodera J S 2013 Phys. Rev. Lett. 110 097001

    [14]

    Jia L, Yu-Lin G, Lei Y, Hong D 2021 Acta Phys. Sin. 70 047401 (in Chinese) [芦佳, 甘渝林, 颜雷, 丁洪 2021 70 047401]

    [15]

    Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature 533 513

    [16]

    Liu Y, Vaitiekėnas S, Martí-Sánchez S, Koch C, Hart S, Cui Z, Kanne T, Khan S A, Tanta R, Upadhyay S, Cachaza M E, Marcus C M, Arbiol J, Moler K A, Krogstrup P 2019 Nano Lett. 20 456

    [17]

    Vaitiekėnas S, Liu Y, Krogstrup P, Marcus C M 2020 Nat. Phys. 17 43

    [18]

    Escribano S D, Maiani A, Leijnse M, Flensberg K, Oreg Y, Levy Yeyati A, Prada E, Seoane Souto R 2022 npj Quantum Mater. 7 81

    [19]

    Escribano S D, Prada E, Oreg Y, Yeyati A L 2021 Phys. Rev. B 104 L041404

    [20]

    Liu C-X, Schuwalow S, Liu Y, Vilkelis K, Manesco A L R, Krogstrup P, Wimmer M 2021 Phys. Rev. B 104 014516

    [21]

    Yu M, Moayedpour S, Yang S, Dardzinski D, Wu C, Pribiag V S, Marom N 2021 Phys. Rev. Materials 5 064606

    [22]

    Liu Y, Luchini A, Martí-Sánchez S, Koch C, Schuwalow S, Khan S A, Stankevič T, Francoual S, Mardegan J R L, Krieger J A, Strocov V N, Stahn J, Vaz C A F, Ramakrishnan M, Staub U, Lefmann K, Aeppli G, Arbiol J, Krogstrup P 2019 ACS Appl. Mater. Interfaces 12 8780

    [23]

    Seong T-Y, Amano H 2020 Surf. Interfaces 21 100765

    [24]

    van Wees B J, Meijer G I, Kuipers J J, Klapwijk T M, Graaf W v d, Borghs G 1995 Phys. Rev. B 51 7973

    [25]

    Takiguchi K, Anh L D, Chiba T, Shiratani H, Fukuzawa R, Takahashi T, Tanaka M 2022 Nat. Commun. 13 6538

    [26]

    Miller J B, Zumbühl D M, Marcus C M, Lyanda-Geller Y B, Goldhaber-Gordon D, Campman K, Gossard A C 2003 Phys. Rev. Lett. 90 076807

    [27]

    Sazgari V, Sullivan G, Kaya İ İ 2020 Phys. Rev. B 101 155302

    [28]

    Herling F, Morrison C, Knox C S, Zhang S, Newell O, Myronov M, Linfield E H, Marrows C H 2017 Phys. Rev. B 95 155307

    [29]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [30]

    Zhi Z, Ruan H, Liu J, Li X, Zhang Y, Yao Q, Tang C, Xiao Y, Kou X 2025 Chinese Phys. Lett. 42 090708

    [31]

    Kondo J 1964 Prog. Theor. Phys. 32 37

    [32]

    Watson J D, Mondal S, Csáthy G A, Manfra M J, Hwang E H, Das Sarma S, Pfeiffer L N, West K W 2011 Phys. Rev. B 83 241305

    [33]

    Hwang E H, Das Sarma S 2008 Phys. Rev. B 77 235437

    [34]

    Hirakawa K, Sakaki H 1986 Phys. Rev. B 33 8291

    [35]

    Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707

  • [1] 张钰, 孟庚辰, 赵治源, 雷娜, 魏大海. 稀土-过渡金属亚铁磁材料中的Dzyaloshinskii-Moriya相互作用与自旋电子学应用.  , doi: 10.7498/aps.75.20251455
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , doi: 10.7498/aps.72.20230690
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展.  , doi: 10.7498/aps.72.20230698
    [4] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展.  , doi: 10.7498/aps.71.20220100
    [5] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构.  , doi: 10.7498/aps.70.20200885
    [6] 芦佳, 甘渝林, 颜雷, 丁洪. EuS/Ta异质结的极大磁电阻效应.  , doi: 10.7498/aps.70.20201213
    [7] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子.  , doi: 10.7498/aps.69.20200680
    [8] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体.  , doi: 10.7498/aps.68.20190951
    [9] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学.  , doi: 10.7498/aps.68.20191433
    [10] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , doi: 10.7498/aps.68.20191450
    [11] 敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起. 三维拓扑绝缘体antidot阵列结构中的磁致输运研究.  , doi: 10.7498/aps.67.20172346
    [12] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展.  , doi: 10.7498/aps.67.20181711
    [13] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , doi: 10.7498/aps.64.097202
    [14] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质.  , doi: 10.7498/aps.64.097302
    [15] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究.  , doi: 10.7498/aps.63.117301
    [16] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究.  , doi: 10.7498/aps.63.187303
    [17] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应.  , doi: 10.7498/aps.62.167401
    [18] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究.  , doi: 10.7498/aps.61.123101
    [19] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极.  , doi: 10.7498/aps.61.117302
    [20] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射.  , doi: 10.7498/aps.61.177303
计量
  • 文章访问数:  28
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-04

/

返回文章
返回
Baidu
map