搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁场和温度变化的太赫兹光谱研究a-cut YbFeO3中的自旋重取向

陈盈 董志涛 郑世芸 刘永振 居学尉 曹义明 王向峰

引用本文:
Citation:

基于磁场和温度变化的太赫兹光谱研究a-cut YbFeO3中的自旋重取向

陈盈, 董志涛, 郑世芸, 刘永振, 居学尉, 曹义明, 王向峰

Terahertz Spectroscopy Study of the Magnetic Field- and Temperature-Induced Spin-Reorientation in a-cut YbFeO3

CHEN Ying, DONG Zhitao, ZHENG Shiyun, LIU Yongzhen, JU Xuewei, CAO Yiming, WANG Xiangfeng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文利用时域太赫兹光谱技术研究了a-cut YbFeO3单晶在温度(1.6-300 K)与磁场(0-7 T)调控下的自旋重取向(spin-reorientation transition,SRT)行为与稀土离子的电子顺磁共振(electron paramagnetic resonance,EPR)跃迁。实验观察到在约7 K附近发生温度诱导的SRT,表现为磁共振模式的突变。在20 K下,沿a轴施加磁场时,样品经历由Γ4相向Γ2相的不完全相变,在Γ24中间相中同时激发准反铁磁模(quasi-AntiFerroMagnetic,q-AFM)与准铁磁模(quasi-FerroMagnetic,q-FM),并在低频区(<0.8 THz)识别出Yb3+的Zeeman子能级间的EPR跃迁。基于自旋动力学模型与晶体场理论,所有观测模式均获得和实验一致的定量拟合。该模型揭示了Fe3+宏观磁化强度在磁场中的连续转动行为,阐明了SRT的微观机制,SRT过程源于外磁场与Fe3+-Yb3+各向异性交换相互作用之间的竞争与协同,它们共同调制了系统的内部有效场,决定了中间相的稳定性和SRT行为。本研究证实了温度与磁场对YbFeO3自旋构型的有效调控,深化了对Fe3+-Yb3+交换作用机制的理解,为稀土正铁氧体太赫兹磁光器件的开发提供了重要依据。
    The spin-reorientation transition (SRT) in rare-earth orthoferrites offers an important platform for exploring the coupling and manipulation of spin dynamics, which is crucial for developing high-frequency spintronic and terahertz (THz) magneto-optical devices. In this work, we systematically investigate the temperature- and magnetic-field-induced SRT behavior and the associated electron paramagnetic resonance (EPR) transitions of Yb3+ ions in a-cut YbFeO3 single crystals using time-domain terahertz spectroscopy (THz-TDS). The temperature-dependent measurements from 1.6 to 300 K reveal a distinct SRT near 7 K, marked by a sudden shift of the magnetic resonance mode frequency. This indicates a transition of the Fe3+ spin configuration from the low-temperature Γ2 phase to the high-temperature Γ4 phase, driven primarily by the temperature evolution of the anisotropic Fe3+-Yb3+ exchange interaction.
    Under an external magnetic field applied along the a-axis at 20 K, the system exhibits an incomplete field-induced SRT from the Γ4 phase toward the Γ2 phase. In the intermediate Γ24 phase, both the quasi-AntiFerroMagnetic (q-AFM) and quasi-FerroMagnetic (q-FM) modes are simultaneously excited, as observed in the THz absorption spectra. Notably, even at the maximum field of 7 T, the transition remains incomplete, indicating the stabilization of the intermediate phase over a wide field range. In the low-frequency region (<0.8 THz), two absorption peaks exhibiting clear blue shifts with increasing magnetic field are identified as EPR transitions between Zeeman sublevels of the crystal-field-split Kramers doublets of Yb3+ ions.
    All experimental observations, including the temperature- and magnetic-field-dependent frequency responses of the q-AFM and q-FM modes as well as the evolution of the electron paramagnetic resonance signals with magnetic field, have been quantitatively described by coupling a spin dynamics model with crystal field theory. The model successfully reproduces the continuous rotation of the macroscopic Fe3+ magnetization vector within the ac plane under an applied magnetic field, revealing the microscopic mechanism of the field-induced SRT. The analysis demonstrates that the SRT process results from the competition and synergy between the external magnetic field and the anisotropic Fe3+-Yb3+ exchange interaction, which collectively modulate the internal effective field and determine the stability of the intermediate Γ24 phase.
    This study confirms the effective control of spin configurations in YbFeO3 via both temperature and magnetic field, provides a deeper understanding of the Fe3+-Yb3+ exchange interaction mechanism, and offers important experimental insights for the design of terahertz functional devices based on rare-earth orthoferrites.
  • [1]

    Chaudhary V, Mantri S A, Ramanujan R V, Banerjee R 2020 Prog. Mater. Sci. 114 100688

    [2]

    Serrano D, Li H R, Wang S K, Guillod T, Luo M, Bansal V 2023 IEEE Trans. Power Electron. 38 14292-14316

    [3]

    Nithya R, Thirunavukkarasu A, Sathya A B, Sivashankar R 2021 Environ. Chem. Lett. 19 1275-1294

    [4]

    Stewart G A, Lampl W 2017 J. Phys.: Conf. Ser. 898 072013

    [5]

    Wang Y Y, Song C, Zhang J Y, Pan F 2017 Prog. Nat. Sci.: Mater. Int. 27 208-216

    [6]

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501(in Chinese) [金钻明,阮舜逸,李炬赓,林贤,任伟,曹世勋,马国宏,姚建铨 2019 68 167501]

    [7]

    White R L 1969 J. Appl. Phys. 40 1061

    [8]

    Moriya T 1960 Phys. Rev. 120 91

    [9]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [10]

    Yamaguchi T 1974 J. Phys. Chem. Solids 35 479

    [11]

    Ma X X, Yuan N, Luo X, Chen Y K, Kang B J, Ren W, Zhang J C, Cao S X 2021 Mater. Today Commun. 27 102438

    [12]

    Aring K B, Sievers A J 1970 J. Appl. Phys. 41 1197

    [13]

    Davidson G R, Dunlap B D, Eibschütz M, van Uitert L G 1975 Phys. Rev. B 12 1681

    [14]

    Dan'shin N K, Kramarchuk G G, Sdvizhkov M A 1986 Pis'ma Zh. Eksp. Teor. Fiz. 44 85

    [15]

    Brown S R, Hall I 1993 J. Phys.: Condens. Matter 5 4207

    [16]

    Ju X W, Hu Z Q, Huang F, Wu H B, Belyanin A, Kono J, Wang X F 2021 Opt. Express 29 9261-9268

    [17]

    Ju X W, Zhu G F, Huang F, Dai Z R, Chen Y Q, Guo C X, Deng L, Wang X F 2022 Opt. Express 30 957-965

    [18]

    Peng Y, Huang J L, Luo J, Yang Z F, Wang L P, Wu X, Zang X F, Yu C, Gu M, Hu Q, Zhang X C, Zhu Y M, Zhuang S L 2021 PhotoniX 2 1-18

    [19]

    Wang N, Zhu G F, Hu Z Q, Cao Y M, Wang X F, Ju X W, Su H B, Huang F 2023 Infrared Phys. Technol. 135 104937

    [20]

    Lin X, Jin Z M, Li J G, Guo F Y, Zhuang N F, Chen J Z, Dai Y, Yan X N, Ma G H 2018 Acta Phys. Sin. 67 237801(in Chinese) [林贤,金钻明,李炬赓,郭飞云,庄乃锋,陈建中,戴晔,阎晓娜,马国宏 2018 67 237801]

    [21]

    Grischkowsky D, Duling I N, III, Chen J C, Chi C C 1987 Phys. Rev. Lett. 59 1663-1668

    [22]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562-1571

    [23]

    Duvillaret L, Garet F, Coutaz J L 2002 IEEE J. Sel. Top. Quantum Electron. 2 739-746

    [24]

    Duvillaret L, Garet F, Coutaz J L 1999 Appl. Opt. 38 409-415

    [25]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y G, Xiang M L, Jin Z M, Ren W, Ma G H, Cao S K, Turchinovich D, Kono J 2018 Science 361 794-797

    [26]

    Wood D L, Holmes L M, Remeika J P 1969 Phys. Rev. 185 689

    [27]

    Balbashov A M, Berezin A G, Gufan Yu M, Kolyadko G S, Marchukov P Yu, Rudashevskii E G 1987 Sov. J. Exp. Theor. Phys. 66 174

    [28]

    Morrison C A, Wortman D E 1992 Opt. Mater. 1 195-207

  • [1] 苏浩斌, 郑世芸, 王宁, 朱国锋, 居学尉, 黄峰, 曹义明, 王向峰. DyFeO3中高于Morin温度的新型磁相变.  , doi: 10.7498/aps.74.20250005
    [2] 陈涛, 李欣. 太赫兹光谱在转基因菜籽油鉴别中的应用: 基于改进蜉蝣算法的支持向量机模型.  , doi: 10.7498/aps.73.20231569
    [3] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性.  , doi: 10.7498/aps.73.20240944
    [4] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向.  , doi: 10.7498/aps.73.20231322
    [5] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱.  , doi: 10.7498/aps.71.20221586
    [6] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱.  , doi: 10.7498/aps.69.20200682
    [7] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱.  , doi: 10.7498/aps.69.20201518
    [8] 连宇翔, 戴泽林, 许向东, 谷雨, 李欣荣, 王福, 杨春, 成晓梦, 周华新. 有机电光晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的太赫兹光谱研究.  , doi: 10.7498/aps.66.244211
    [9] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究.  , doi: 10.7498/aps.66.037801
    [10] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析.  , doi: 10.7498/aps.64.168701
    [11] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究.  , doi: 10.7498/aps.62.147601
    [12] 郑玉龙, 甄聪棉, 马丽, 李秀玲, 潘成福, 侯登录. Si-Al2O3复合薄膜的室温铁磁性.  , doi: 10.7498/aps.60.117502
    [13] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性.  , doi: 10.7498/aps.59.4245
    [14] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子.  , doi: 10.7498/aps.59.4640
    [15] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , doi: 10.7498/aps.59.6487
    [16] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究.  , doi: 10.7498/aps.58.7640
    [17] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究.  , doi: 10.7498/aps.56.535
    [18] 王文全, 徐世峰, 徐钦英, 张文梁, 陈东风. (Nd1-xGdx)3Fe27.31Ti1.69化合物的结构和磁性.  , doi: 10.7498/aps.55.3531
    [19] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7(Fe0.9T0.1)1.95合金的结构、自旋重取向和穆斯堡尔谱.  , doi: 10.7498/aps.55.879
    [20] 郭光华, 张海贝. 化合物HoMn6Sn6的磁晶各向异性及自旋重取向相变研究.  , doi: 10.7498/aps.54.5879
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-04

/

返回文章
返回
Baidu
map