-
聚合物分散液晶光栅具备成本低廉、可大面积制备和快速响应等优势,在全息波导显示及光互联领域广泛用于分束与耦合器件等。目前基于聚合物分散液晶材料体系制备的分光器件,多数研究成果集中于构建产生2 × 2衍射阵列的二维光栅,在需要多通道、多级次光场调控的场景中适用性受限。本文通过全息干涉场场强分布理论推导,在有限元仿真软件COMSOL Multiphysic中构建对应折射率分布的体全息透射式光栅模型。结合仿真优化实验中参考光/物光曝光光强比和光栅层厚度等制备参数。在三波干涉曝光法成功制备具有对称衍射特性一维光栅基础之上,使用五波干涉曝光法制备出符合设计指标的聚合物分散液晶二维光栅:实现在532 nm波段正入射条件下,产生3 × 3二维阵列衍射,1级衍射角为18.4°,单1级衍射光分光能量占比均在10%以上。从而实现了多级次、高效的衍射分光目的。Polymer-dispersed liquid crystal (PDLC) gratings, as an emerging optical material, offer significant advantages such as low fabrication cost, suitability for large-area processing, and rapid electro-optic response. They show great potential in holographic waveguide displays and optical interconnection systems, where they are often used as key beam-splitting and coupling components. However, most current beam-splitting devices based on PDLC materials are limited to generating 2×2 diffraction arrays, which considerably restricts their ability to achieve multi-channel and multi-order light field modulation, thereby failing to meet the growing demands of high-dimensional optical information processing.
To overcome this limitation, this study proposes a fabrication scheme for two-dimensional PDLC gratings based on holographic multi-beam interference. First, starting from holographic interference theory, we rigorously derived the light intensity distribution function of the multibeam interference field. Second, a physical model of a volume holographic transmission grating with a refractive index distribution matching the interference field intensity was constructed using the finite element analysis software COMSOL Multiphysics. Utilizing this model, we simulated and optimized the final diffraction performance by varying key fabrication parameters, such as the exposure intensity ratio between the reference and object beams and the grating layer thickness.
During the experimental validation phase, we successfully fabricated a one-dimensional PDLC grating using a symmetrical three-wave interference exposure method. Under normal incidence with a 532 nm laser, the fabricated one-dimensional PDLC grating demonstrated symmetric diffraction, with the pair of first-order beams both exhibiting a diffraction efficiency exceeding 44%, thereby preliminarily verifying the reliability of the model. Building on this foundation, we further designed an innovative five-wave interference exposure setup. Using a custom-made quadrilateral pyramid beam splitter, we achieved five-beam interference and successfully prepared a two-dimensional PDLC grating that met the design specifications. Test results demonstrate that under normal incidence at 532 nm, this two-dimensional grating produces a 3×3 two-dimensionaldiffraction array. The 1st-order diffraction angle is 18.4°, and the beamsplitting energy ratio of each single 1st-order diffracted light exceeds 10%, achieving efficient energy distribution.-
Keywords:
- polymer-dispersed liquid crystal /
- multi-wave interference /
- two-dimensional grating /
- beam splitting device
-
[1] Wang Y M, Mo S P, Wang H, Qiu L Z, Xu M, Lu H B 2024 Chin. J. Liq. Cryst. Disp. 39 1285 (in chinese) [王雨蒙, 莫顺聘, 王晗, 邱龙臻, 徐苗, 陆红波 2024 液晶与显示 39 1285]
[2] Yamaguchi M, Matsukizono H, Okumura Y, Kikuchi H 2024 Molecules 29 4837
[3] Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 435 (in chinese) [李文萃, 刘永刚, 宣丽 2011 60 435]
[4] Zhang Z W 2025 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [张作为 2025 博士学位论文(北京:北京科技大学)]
[5] Chen H P, Nie Y J, Li G C, Wei Y H, Hu H, Lu G H, Li S T, Zhu Y W 2023 Acta Phys. Sin. 72 298 (in Chinese) [陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟 2023 72 298]
[6] Khalid M, Shanks K, Ghosh A, Tahir A, Sundaram S, Mallick T K 2021 Renewable Energy 164 96
[7] Cheng D W, Ni D W, Lv X, Wang Y D, Yang T, Wang Y T 2024 Acta Opt. Sin. 44 0222001 (in Chinese) [程德文,倪栋伟,吕鑫,王永东,杨通,王涌天 2024 光学学报 44 0222001]
[8] Wu K M, Sun J J, Meng F X, Fan M, Kong X M, Cai M L, Zhao T Z, Yang C Y, Xin Y B, Xing J, Xing H Y, Ye W J 2022 J. Mol. Liq. 353 118664
[9] Kang S, Zhou B, Xie Y, Wang J, Jia W, Zhou C 2024 Optics Express 32 20589
[10] He W C, Geng M M, Feng Y, Lai M B, Liu Q, Zhang Z R 2023 Optical Communication Technology 47 8 (in Chinese) [何万才, 耿敏明, 冯瑶, 赖明彬, 刘嫱, 张振荣 2023 光通信技术 47 8]
[11] He Y M, Jin X Y, Li Z M, Hu X W, Li M, Zhou G F 2022 Chin. J. Liq. Cryst. Disp. 37 1052 (in chinese) [贺雅梅, 靳晓宇, 黎梓铭, 胡小文, 李明, 周国富 2022 液晶与显示 37 1052]
[12] Yin Y F, Liu Z W, Jirigalantu, Yu H Zhu, Wang W, Li X T, Bao H, Li W H, Hao Q 2020 Chinese Optics 13 1224 (in Chinese) [尹云飞, 刘兆武, 吉日嘎兰图, 于宏柱, 王玮, 李晓天, 鲍赫, 李文昊, 郝群 2020 中国光学 13 1224]
[13] Huang C Y, Lin S H 2021 Polymers 13 2906
[14] Wu K M, Sun J J, Meng F X, Fan M, Kong X M, Cai M L, Zhao T Z, Yang C Y, Xin Y B, Xing J, Xing H Y, Ye W J 2022 J. Mol. Liq. 353 118664
[15] Shi J L, Li M, Yan M F, Zhan Q S, Zou Q S, Dai S X, Zhang P Q 2025 Opt. Laser Technol. 183 112243
[16] Zhu N, Zheng J H, Shen T, Li K, Liu Y R 2024 Chin. J. Liq. Cryst. Disp. 39 752 (in chinese) [朱宁, 郑继红, 申桐, 李科, 刘悠嵘 2024 液晶与显示 39 752]
[17] Liu Y R 2021 Ph. D. Dissertation (Shanghai: University of Shanghai for Science and Technology) (in Chinese) [刘悠嵘 2021 博士学位论文(上海:上海理工大学)]
[18] Meng S, Kyu T, Natarajan L V, Tondiglia V P, Sutherland R L, Bunning T J 2005 Macromolecules 38 4844
[19] Gui K 2017 Ph. D. Dissertation (Shanghai: University of Shanghai for Science and Technology) (in Chinese) [桂坤2017 博士学位论文(上海:上海理工大学)]
[20] Shen C, Kyu T 1995 J. Chem. Phys. 102 556
[21] Li S B, Yang M 2011 J. Southwest univ., Nat. Sci. Ed. 33 67 (in Chinese) [李松柏, 杨敏 2011 西南大学学报(自然科学版) 33 67]
[22] Li K, Cai J, Lu S Y, Xu H, Hu H F, Zheng J H 2025 Acta Photonica Sinica 54 0605001 (in Chinese) [李科, 蔡佳, 鲁思宇, 许海, 胡海峰, 郑继红 2025光子学报54 0605001]
计量
- 文章访问数: 22
- PDF下载量: 3
- 被引次数: 0








下载: