搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全息多波干涉的二维聚合物分散液晶光栅的仿真与制备

许海 蔡佳 鲁思宇 徐梦杰 郑继红

引用本文:
Citation:

全息多波干涉的二维聚合物分散液晶光栅的仿真与制备

许海, 蔡佳, 鲁思宇, 徐梦杰, 郑继红

Simulation and Preparation of Two-Dimensional Polymer-Dispersed Liquid Crystal Gratings via Holographic Multi-Beam Interference

Xu Hai, Cai Jia, Lu Si Yu, Xu Meng Jie, Zheng Ji Hong
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 聚合物分散液晶光栅具备成本低廉、可大面积制备和快速响应等优势,在全息波导显示及光互联领域广泛用于分束与耦合器件等。目前基于聚合物分散液晶材料体系制备的分光器件,多数研究成果集中于构建产生2 × 2衍射阵列的二维光栅,在需要多通道、多级次光场调控的场景中适用性受限。本文通过全息干涉场场强分布理论推导,在有限元仿真软件COMSOL Multiphysic中构建对应折射率分布的体全息透射式光栅模型。结合仿真优化实验中参考光/物光曝光光强比和光栅层厚度等制备参数。在三波干涉曝光法成功制备具有对称衍射特性一维光栅基础之上,使用五波干涉曝光法制备出符合设计指标的聚合物分散液晶二维光栅:实现在532 nm波段正入射条件下,产生3 × 3二维阵列衍射,1级衍射角为18.4°,单1级衍射光分光能量占比均在10%以上。从而实现了多级次、高效的衍射分光目的。
    Polymer-dispersed liquid crystal (PDLC) gratings, as an emerging optical material, offer significant advantages such as low fabrication cost, suitability for large-area processing, and rapid electro-optic response. They show great potential in holographic waveguide displays and optical interconnection systems, where they are often used as key beam-splitting and coupling components. However, most current beam-splitting devices based on PDLC materials are limited to generating 2×2 diffraction arrays, which considerably restricts their ability to achieve multi-channel and multi-order light field modulation, thereby failing to meet the growing demands of high-dimensional optical information processing.
    To overcome this limitation, this study proposes a fabrication scheme for two-dimensional PDLC gratings based on holographic multi-beam interference. First, starting from holographic interference theory, we rigorously derived the light intensity distribution function of the multibeam interference field. Second, a physical model of a volume holographic transmission grating with a refractive index distribution matching the interference field intensity was constructed using the finite element analysis software COMSOL Multiphysics. Utilizing this model, we simulated and optimized the final diffraction performance by varying key fabrication parameters, such as the exposure intensity ratio between the reference and object beams and the grating layer thickness.
    During the experimental validation phase, we successfully fabricated a one-dimensional PDLC grating using a symmetrical three-wave interference exposure method. Under normal incidence with a 532 nm laser, the fabricated one-dimensional PDLC grating demonstrated symmetric diffraction, with the pair of first-order beams both exhibiting a diffraction efficiency exceeding 44%, thereby preliminarily verifying the reliability of the model. Building on this foundation, we further designed an innovative five-wave interference exposure setup. Using a custom-made quadrilateral pyramid beam splitter, we achieved five-beam interference and successfully prepared a two-dimensional PDLC grating that met the design specifications. Test results demonstrate that under normal incidence at 532 nm, this two-dimensional grating produces a 3×3 two-dimensionaldiffraction array. The 1st-order diffraction angle is 18.4°, and the beamsplitting energy ratio of each single 1st-order diffracted light exceeds 10%, achieving efficient energy distribution.
  • [1]

    Wang Y M, Mo S P, Wang H, Qiu L Z, Xu M, Lu H B 2024 Chin. J. Liq. Cryst. Disp. 39 1285 (in chinese) [王雨蒙, 莫顺聘, 王晗, 邱龙臻, 徐苗, 陆红波 2024 液晶与显示 39 1285]

    [2]

    Yamaguchi M, Matsukizono H, Okumura Y, Kikuchi H 2024 Molecules 29 4837

    [3]

    Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 435 (in chinese) [李文萃, 刘永刚, 宣丽 2011 60 435]

    [4]

    Zhang Z W 2025 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [张作为 2025 博士学位论文(北京:北京科技大学)]

    [5]

    Chen H P, Nie Y J, Li G C, Wei Y H, Hu H, Lu G H, Li S T, Zhu Y W 2023 Acta Phys. Sin. 72 298 (in Chinese) [陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟 2023 72 298]

    [6]

    Khalid M, Shanks K, Ghosh A, Tahir A, Sundaram S, Mallick T K 2021 Renewable Energy 164 96

    [7]

    Cheng D W, Ni D W, Lv X, Wang Y D, Yang T, Wang Y T 2024 Acta Opt. Sin. 44 0222001 (in Chinese) [程德文,倪栋伟,吕鑫,王永东,杨通,王涌天 2024 光学学报 44 0222001]

    [8]

    Wu K M, Sun J J, Meng F X, Fan M, Kong X M, Cai M L, Zhao T Z, Yang C Y, Xin Y B, Xing J, Xing H Y, Ye W J 2022 J. Mol. Liq. 353 118664

    [9]

    Kang S, Zhou B, Xie Y, Wang J, Jia W, Zhou C 2024 Optics Express 32 20589

    [10]

    He W C, Geng M M, Feng Y, Lai M B, Liu Q, Zhang Z R 2023 Optical Communication Technology‌ 47 8 (in Chinese) [何万才, 耿敏明, 冯瑶, 赖明彬, 刘嫱, 张振荣 2023 光通信技术 47 8]

    [11]

    He Y M, Jin X Y, Li Z M, Hu X W, Li M, Zhou G F 2022 Chin. J. Liq. Cryst. Disp. 37 1052 (in chinese) [贺雅梅, 靳晓宇, 黎梓铭, 胡小文, 李明, 周国富 2022 液晶与显示 37 1052]

    [12]

    Yin Y F, Liu Z W, Jirigalantu, Yu H Zhu, Wang W, Li X T, Bao H, Li W H, Hao Q 2020 Chinese Optics 13 1224 (in Chinese) [尹云飞, 刘兆武, 吉日嘎兰图, 于宏柱, 王玮, 李晓天, 鲍赫, 李文昊, 郝群 2020 中国光学 13 1224]

    [13]

    Huang C Y, Lin S H 2021 Polymers 13 2906

    [14]

    Wu K M, Sun J J, Meng F X, Fan M, Kong X M, Cai M L, Zhao T Z, Yang C Y, Xin Y B, Xing J, Xing H Y, Ye W J 2022 J. Mol. Liq. 353 118664

    [15]

    Shi J L, Li M, Yan M F, Zhan Q S, Zou Q S, Dai S X, Zhang P Q 2025 Opt. Laser Technol. 183 112243

    [16]

    Zhu N, Zheng J H, Shen T, Li K, Liu Y R 2024 Chin. J. Liq. Cryst. Disp. 39 752 (in chinese) [朱宁, 郑继红, 申桐, 李科, 刘悠嵘 2024 液晶与显示 39 752]

    [17]

    Liu Y R 2021 Ph. D. Dissertation (Shanghai: University of Shanghai for Science and Technology) (in Chinese) [刘悠嵘 2021 博士学位论文(上海:上海理工大学)]

    [18]

    Meng S, Kyu T, Natarajan L V, Tondiglia V P, Sutherland R L, Bunning T J 2005 Macromolecules 38 4844

    [19]

    Gui K 2017 Ph. D. Dissertation (Shanghai: University of Shanghai for Science and Technology) (in Chinese) [桂坤2017 博士学位论文(上海:上海理工大学)]

    [20]

    Shen C, Kyu T 1995 J. Chem. Phys. 102 556

    [21]

    Li S B, Yang M 2011 J. Southwest univ., Nat. Sci. Ed. 33 67 (in Chinese) [李松柏, 杨敏 2011 西南大学学报(自然科学版) 33 67]

    [22]

    Li K, Cai J, Lu S Y, Xu H, Hu H F, Zheng J H 2025 Acta Photonica Sinica 54 0605001 (in Chinese) [李科, 蔡佳, 鲁思宇, 许海, 胡海峰, 郑继红 2025光子学报54 0605001]

  • [1] 陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟. 聚合物分散液晶薄膜的极化特性及其对电光性能的影响.  , doi: 10.7498/aps.72.20230664
    [2] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件.  , doi: 10.7498/aps.66.218503
    [3] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器.  , doi: 10.7498/aps.66.244204
    [4] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究.  , doi: 10.7498/aps.64.016101
    [5] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响.  , doi: 10.7498/aps.63.048801
    [6] 刘丽娟, 黄文彬, 刁志辉, 张桂洋, 彭增辉, 刘永刚, 宣丽. 基于聚合物支撑形貌液晶/聚合物光栅的低阈值分布反馈式激光器.  , doi: 10.7498/aps.63.194202
    [7] 刁志辉, 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 基于低散射和高增益全息液晶/聚合物光栅的分布反馈式激光器.  , doi: 10.7498/aps.62.034202
    [8] 于淼, 高劲松, 张建, 徐念喜. 二维光栅与周期性缝隙阵列组合薄膜结构的杂散光抑制.  , doi: 10.7498/aps.62.204208
    [9] 邓舒鹏, 黄文彬, 刘永刚, 刁志辉, 彭增辉, 姚丽双, 宣丽. 基于全息液晶/聚合物光栅的分布反馈式激光器的波长调谐特性研究.  , doi: 10.7498/aps.61.126101
    [10] 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 全息液晶/聚合物透射光栅光学各向异性的研究.  , doi: 10.7498/aps.61.094208
    [11] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 鲁兴海, 宣丽. 基于透射式液晶/聚合物光栅的分布反馈式激光器的研究.  , doi: 10.7498/aps.60.056102
    [12] 李文萃, 刘永刚, 宣丽. 表面摩擦处理对全息聚合物分散液晶光栅电光特性的影响.  , doi: 10.7498/aps.60.046101
    [13] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究.  , doi: 10.7498/aps.60.086103
    [14] 郑继红, 钟阳万, 温垦, 骆鑫盛, 庄松林. 电控聚合物分散液晶全息透镜及特性研究.  , doi: 10.7498/aps.59.1831
    [15] 田勇, 潘煦, 王长顺, 张小强, 曾艺. 偶氮液晶聚合物薄膜的二维偏振全息记录.  , doi: 10.7498/aps.58.6979
    [16] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备.  , doi: 10.7498/aps.57.7344
    [17] 郑致刚, 马 骥, 宋 静, 刘永刚, 胡立发, 宣 丽. 基于丙烯酸酯的全息聚合物分散液晶光栅的动力学理论研究.  , doi: 10.7498/aps.56.15
    [18] 熊大元, 曾 勇, 李 宁, 陆 卫. 甚长波量子阱红外探测器光栅耦合的研究.  , doi: 10.7498/aps.55.3642
    [19] 张 斌, 刘言军, 徐克璹. 全息聚合物弥散液晶器件电光特性的研究.  , doi: 10.7498/aps.53.1850
    [20] 袁保红, 陈钟贤, 姜永远, 孙秀冬, 周忠祥, 姚凤凤. 光折变聚合物中斩波调制对二波耦合增益系数的增强效应.  , doi: 10.7498/aps.51.1512
计量
  • 文章访问数:  22
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-24

/

返回文章
返回
Baidu
map