搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铌酸锂波导的中红外纯态量子光源

黄宇航 王东周 柯少林 金锐博

引用本文:
Citation:

基于铌酸锂波导的中红外纯态量子光源

黄宇航, 王东周, 柯少林, 金锐博

Mid-infrared pure-state quantum light source based on lithium niobate waveguides

Huang Yu-Hang, Wang Dong-Zhou, Ke Shao-Lin, Jin Rui-Bo
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 中红外量子光源在气体传感和红外热成像等领域具有广阔的应用前景.然而,目前常用的中红外量子纠缠光源主要依赖块状周期极化铌酸锂(periodically poled lithium niobate,PPLN)晶体,其亮度和集成度均存在不足.本文提出了一种基于铌酸锂薄膜波导的理论方案,利用1556.9 nm泵浦产生中心波长为3113.8 nm的纠缠光子对.通过合理的波导结构设计与周期极化设计,实现了II型相位匹配与群速度匹配,使得横电(transverse electric,TE)偏振泵浦入射时能够下转换产生TE偏振与横磁(transverse magnetic,TM)偏振的光子对.进一步地,结合域排列算法对PPLN波导的极化方向进行定制化设计,可实现精确的相位匹配,从而获得纯度高达0.999的量子光源,亮度可以达到6.18×106 cps/mW,相比块状PPLN晶体光源亮度提升三个数量级.本研究有望为中红外波段实现高亮度、高纯度的片上量子光源提供解决方案.
    Mid-infrared quantum light sources hold broad application prospects in fields such as gas sensing and infrared thermal imaging. However, currently used mid-infrared quantum entanglement light sources primarily rely on bulk periodically poled lithium niobate (PPLN) crystals, which suffer from limitations in both brightness and integration. This paper proposes a theoretical scheme based on lithium niobate thin films utilizing a 1556.9 nm pump to generate entangled photon pairs with a central wavelength of 3113.8 nm. Through optimized waveguide structure and periodic polarization design, Type-II phase matching and group velocity matching are achieved. This enables transverse electric (TE)-polarized pump input to downconvert to generate photon pairs with TE and transverse magnetic (TM) polarization. Furthermore, by combining a domain arrangement algorithm for customized design of the PPLN waveguide’s polarization direction, precise phase matching is achieved, yielding a quantum light source with a purity as high as 0.999 and a brightness reaching 6.18 × 106 cps/mW, representing a three-order-of-magnitude enhancement over bulk PPLN crystal sources. This work offers a promising solution for realizing high-brightness, high-purity on-chip quantum light sources in the mid-infrared band.
  • [1]

    金锐博, 田颖, “中红外波段量子光源的研究进展,” 安徽大学学报: 自然科学版 45, 10 (2021).

    [2]

    E. Tournié and L. Cerutti, Mid-infrared optoelectronics: materials, devices, and applications (Woodhead publishing, 2019).

    [3]

    M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer Science & Business Media, 2008).

    [4]

    P. S. Kuo, T. Gerrits, V. B. Verma, and S. W. Nam, “Spectral correlation and interference in nondegenerate photon pairs at telecom wavelengths,” Optics Letters 41, 5074–5077 (2016).

    [5]

    F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Optics Express 24, 3248–3257 (2016).

    [6]

    A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Advanced Materials 27, 4597–4603 (2015).

    [7]

    M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nature Communications 8, 15184 (2017).

    [8]

    Z.-Q.-Z. Han, X.-H. Wang, J.-P. Li, B.-W. Liu, Z.-H. Zhou, H. Zhang, Y.-H. Li, Z.-Y. Zhou, and B.-S. Shi, “High resolution up-conversion imaging in the 10 µm band under incoherent illumination,” arXiv preprint arXiv:2505.24367 (2025).

    [9]

    J. Shi, T. T. W. Wong, Y. He, L. Li, and L. V. Wang, “High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy,” Nat. Photonics 13, 609 (2019).

    [10]

    Q. Wang, L. Hao, Y. Zhang, L. Xu, C. Yang, X. Yang, and Y. Zhao, “Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffce to beat the shot-noise limit,” Optics Express 24, 5045–5056 (2016).

    [11]

    S. H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).

    [12]

    M. M. M, A. Trenti, S. Piccione, G. Fontana, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Communications 8, 15184 (2017).

    [13]

    S. Prabhakar, T. Shields, A. C. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2.1 µm,” Sci. Adv. 6, eaay5195 (2020).

    [14]

    B. Wei, W.-H. Cai, C. Ding, G.-W. Deng, R. Shimizu, Q. Zhou, and R.-B. Jin, “Mid-infrared spectrally-uncorrelated biphotons generation from doped ppln: a theoretical investigation,” Optics Express 29, 256–271 (2020).

    [15]

    C.-T. Zhang, X.-T. Shi, W.-X. Zhu, J.-L. Zhu, X.-Y. Hao, and R.-B. Jin, “Preparation of spectrally pure single-photon source at 3 µm mid-infrared band from lithium niobate crystal with domain sequence algorithm,” Acta Physica Sinica 71 (2022).

    [16]

    W.-H. Cai, Y. Tian, and R.-B. Jin, “Mid-infrared spectrally pure single-photon states generation from 22 nonlinear optical crystals,” Quantum Engineering 2023, 6929253 (2023).

    [17]

    Z. Ge, Z.-Q.-Z. Han, F. Yang, X.-H. Wang, Y.-H. Li, Y. Li, M.-Y. Gao, R.-H. Chen, S.-J. Niu, M.-Y. Xie et al., “Quantum entanglement and interference at 3 µm,” Science Advances 10, eadm7565 (2024).

    [18]

    W.-Z. Li, C. Zhou, Y. Wang, L. Chen, X.-H. Wang, D.-Y. Zheng, M. Yu Xie, Y.-H. Li, Z.-Y. Zhou, W.-S. Bao et al., “Mid-infrared and telecom band two-color entanglement source for quantum communication,” Laser & Photonics Reviews p. e00338 (2025).

    [19]

    W.-X. Zhu and R.-B. Jin, “4780 nm ultra-broadband entangled biphotons from a chirped PPLN,” Applied Physics Letters 126, 014001 (2025).

    [20]

    Y.-H. Chen, B. Ji, N.-Q. Li, Z. Jiang, W. L. andYu Dong Li, L.-S. Feng, T.-F. Wu, and G.-Q. He, “Compact generation scheme of path-frequency hyperentangled photons using 2d periodical nonlinear photonic crystal,” Chinese Physics B 32, 120307 (2023).

    [21]

    X. Liu, C. Chen, R. Ge, J. Wu, X. Chen, and Y. Chen, “Ultralow-threshold lithium niobate photonic crystal nanocavity laser,” Nano Letters 25, 6454–6460 (2025).

    [22]

    X.-X. Fang, G. Shentu, and H. Lu, “Broadband quantum photon source in step-chirped periodically poled lithium niobate waveguide,” arXiv preprint arXiv:2510.03619 (2025).

    [23]

    Y. Chen, B. Ji, T. Wu, and G. He, “Hyperentangled-state generation in nanophotonic periodically poled lithium niobate waveguides,” Phys. Rev. Appl. 23, 024030 (2025).

    [24]

    R.-B. Jin, Z.-Q. Zeng, D. Xu, C.-Z. Yuan, B.-H. Li, Y. Wang, R. Shimizu, M. Takeoka, M. Fujiwara, M. Sasaki, and P.-X. Lu, “Spectrally resolved franson interference,” Sci. China: Phys., Mech. Astron. 67, 250312 (2024).

    [25]

    P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New Journal of Physics 10, 093011 (2008).

    [26]

    K. Edamatsu, R. Shimizu, W. Ueno, R.-B. Jin, F. Kaneda, M. Yabuno, H. Suzuki, S. Nagano, A. Syouji, and K. Suizu, “Photon pair sources with controlled frequency correlation,” Prog. Inform 8, 19–26 (2011).

    [27]

    R.-B. Jin and R. Shimizu, “Extended Wiener–Khinchin theorem for quantum spectral analysis,” Optica 5, 93–98 (2018).

    [28]

    O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Applied Physics B 91, 343–348 (2008).

    [29]

    R.-B. Jin, G.-Q. Chen, F. Laudenbach, S. Zhao, and P.-X. Lu, “Thermal effects of the quantum states generated from the isomorphs of ppktp crystal,” Optics & Laser Technology 109, 222–226 (2019).

    [30]

    F. Grafftti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Science and Technology 2, 035001 (2017).

    [31]

    X. Shi, S. S. Mohanraj, V. Dhyani, A. A. Baiju, S. Wang, J. Sun, L. Zhou, A. Paterova, V. Leong, and D. Zhu, “Effcient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides,” Light: Science & Applications 13, 282 (2024).

    [32]

    J. Schneeloch, S. H. Knarr, D. F. Bogorin, M. L. Levangie, C. C. Tison, R. Frank, G. A. Howland, M. L. Fanto, and P. M. Alsing, “Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion,” Journal of Optics 21, 043501 (2019).

    [33]

    J.-L. Zhu, W.-X. Zhu, X.-T. Shi, C.-T. Zhang, X. Hao, Z.-X. Yang, and R.-B. Jin, “Design of midinfrared entangled photon sources using lithium niobate,” Journal of the Optical Society of America B 40, A9–A16 (2022).

    [34]

    J.-W. Ying, J.-Y. Wang, Y.-X. Xiao, S.-P. Gu, X.-F. Wang, W. Zhong, M.-M. Du, X.-Y. Li, S.- T. Shen, A.-L. Zhang et al., “Passive-state preparation for quantum secure direct communication,” Science China Physics, Mechanics & Astronomy 68, 240312 (2025).

  • [1] 刘励强, 苏伟伦, 刘峻铭, 邹娱, 洪丽红, 李志远. 应用于1064 nm倍频实验的啁啾周期极化铌酸锂晶体的结构设计与角度鲁棒性测试.  , doi: 10.7498/aps.73.20240778
    [2] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长量子关联光子对的产生.  , doi: 10.7498/aps.73.20241274
    [3] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究.  , doi: 10.7498/aps.73.20240791
    [4] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟.  , doi: 10.7498/aps.71.20220016
    [5] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器.  , doi: 10.7498/aps.71.20211217
    [6] 张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博. 利用域排列算法设计铌酸锂晶体实现3 μm中红外波段频域纯态单光子源.  , doi: 10.7498/aps.71.20220739
    [7] 张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳. 基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量.  , doi: 10.7498/aps.67.20180329
    [8] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法.  , doi: 10.7498/aps.64.114207
    [9] 李金洋, 逯丹凤, 祁志美. 铌酸锂波导电光重叠积分因子的波长依赖特性分析.  , doi: 10.7498/aps.63.077801
    [10] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤.  , doi: 10.7498/aps.60.064213
    [11] 张耘. 周期性极化铌酸锂的微区拉曼及荧光研究.  , doi: 10.7498/aps.59.5528
    [12] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究.  , doi: 10.7498/aps.58.4987
    [13] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换.  , doi: 10.7498/aps.57.252
    [14] 齐继伟, 李玉栋, 许京军, 崔国新, 孔凡磊, 孙 骞. 铌酸锂晶体中的磁光折变效应研究.  , doi: 10.7498/aps.56.7015
    [15] 张开春, 刘盛纲. 周期极化铌酸锂中光整流THz波辐射.  , doi: 10.7498/aps.56.5258
    [16] 薛挺, 于建, 杨天新, 倪文俊, 谭莉, 李世忱. 周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析.  , doi: 10.7498/aps.51.2528
    [17] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 1.5μm波段基于级联二阶非线性的铌酸锂光波导全光波长变换的理论分析.  , doi: 10.7498/aps.51.91
    [18] 姚江宏, 陈亚辉, 许京军, 张光寅, 朱圣星. 近化学计量比铌酸锂晶体周期极化畴反转特性研究.  , doi: 10.7498/aps.51.192
    [19] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计.  , doi: 10.7498/aps.51.565
    [20] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析.  , doi: 10.7498/aps.51.1521
计量
  • 文章访问数:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-22

/

返回文章
返回
Baidu
map