搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于布洛赫振荡的非亚反冲6Li原子的动量转移

余石川 张亮 樊健 尹梦佳 邓书金 武海斌

引用本文:
Citation:

基于布洛赫振荡的非亚反冲6Li原子的动量转移

余石川, 张亮, 樊健, 尹梦佳, 邓书金, 武海斌

Momentum transfer of 6Li atoms without subrecoil temperature based on Bloch oscillations

YU Shichuan, ZHANG Liang, FAN Jian, YIN Mengjia, DENG Shujin, WU Haibin
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 原子干涉仪可以实现反冲频率的高精度测量,对于确定精细结构常数至关重要。本文在6Li冷原子团中基于布洛赫振荡发展了一种大动量转移技术,通过将原子装载至高阱深的光晶格中并对布洛赫激光频率进行绝热啁啾,在远高于反冲温度的条件下实现了40倍反冲动量的大动量转移,在该动量下转移原子数目可达5 × 106。研究还发现,在高温条件下初速度与光晶格加速方向一致的原子更容易被加速。该大动量转移技术有望大幅度提高6Li原子反冲频率的测量精度,为后续在6Li原子干涉仪中实现精细结构常数的高精度标定提供重要参考。
    Atom interferometer enables high-precision measurement of recoil frequency, which is crucial for determining the fine structure constant. Large momentum transfer (LMT) based on Bloch oscillations in atom interferometers can significantly enhance the measurement precision of the recoil frequency. Typically, applying Bloch oscillations to an atomic ensemble requires the atoms to be cooled within the first Brillouin zone. However, deep cooling of lithium atoms is challenging, making it diffcult to directly apply Bloch oscillations. Therefore, this paper develops an LMT technique based on Bloch oscillations in a relatively high-temperature ensemble of 6Li atoms. By constructing a deep potential optical lattice, the high-temperature atoms can be effciently loaded into the lattice. Subsequently, the optical lattice is adiabatically chirped to suppress interband transitions of the atoms and enable atoms to accelerate with the lattice. Although the effciency of a single Bloch oscillation decreases under the tight-binding approximation, this method simultaneously relaxes the temperature requirements of the LMT technique. Consequently, we achieve a large momentum transfer of 40 recoil momenta at 80 μK (far above the recoil temperature), with the number of transferred atoms reaching up to 5 × 106. Subsequent analysis of the atomic momentum spectrum before and after the Bloch oscillations revealed that, due to Doppler broadening, the atomic momentum shows a continuous distribution between the initial momentum and the target momentum, which limits the momentum transfer effciency. It was found that for a fixed optical lattice depth and pulse duration, the momentum distribution of atoms participating in the Bloch oscillations is independent of the number of oscillations. Furthermore, atoms with initial velocities aligned with the acceleration direction of the optical lattice are more easily accelerated. This LMT technique is expected to substantially enhance the measurement precision of the 6Li atomic recoil frequency, providing an important reference for the subsequent high-precision calibration of the fine structure constant using 6Li atom interferometers.
  • [1]

    Liu W, Boshier M G, Dhawan S, Van Dyck O, Egan P, Fei X, Perdekamp M G, Hughes V, Janousch M, Jungmann K, et al. 1999 Phys. Rev. Lett. 82 711

    [2]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009

    [3]

    Dirac P A M 1928 Proc. R. Soc. Lond. A. 117 610

    [4]

    Uzan J P 2011 Living Rev. Relativ. 14 1

    [5]

    Khorev V N, Shifrin V, Shubin S A, Park P G 2010 In CPEM 2010.(IEEE), pp 314-315

    [6]

    Shields J, Dziuba R, Layer H 2002 IEEE Trans. Instrum. Meas. 38 249

    [7]

    Jeffery A, Elmquist R E, Shields J Q, Lee L H, Cage M E, Shields S H, F D R 1998 Metrologia 35 83

    [8]

    Van Dyck R S, Schwinberg P B, Dehmelt H G 1987 Phys. Rev. Lett. 59 26

    [9]

    Hanneke D, Fogwell S, Gabrielse G 2008 Phys. Rev. Lett. 100 120801

    [10]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807

    [11]

    Williams E, Jones G, Ye S, Liu R, Sasaki H, Olsen P, Phillips W, Layer H 1989 IEEE Trans. Instrum. Meas. 38 233

    [12]

    Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L, Biraben F 2004 Phys. Rev. Lett. 92 253001

    [13]

    Cadoret M, de Mirandes E, Cladé P, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2008 Phys. Rev. Lett. 101 230801

    [14]

    Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. Lett. 96 033001

    [15]

    Cladé P, Nez F, Biraben F, Guellati-Khélifa S 2019 C. R. Physique. 20 77

    [16]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101

    [17]

    Zheng X, Sun Y, Chen J J, Hu S M 2018 Acta Phys. Sin. 67 164203(in Chinses)[郑昕,孙羽,陈娇 娇,胡水明2018 67 164203]

    [18]

    Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113 023005

    [19]

    Rosi G, D'Amico G, Cacciapuoti L, Sorrentino F, Prevedelli M, Zych M, Brukner Č, Tino G M 2017 Nat. Commun. 8 15529

    [20]

    Mills I M, Mohr P J, Quinn T J, Taylor B N, Williams E R 2011 Phil. Trans. R. Soc. A. 369 3907

    [21]

    Weiss D S, Young B C, Chu S 1993 Phys. Rev. Lett. 70 2706

    [22]

    Taylor B N 1994 Metrologia 31 181

    [23]

    Wicht A, Hensley J M, Sarajlic E, Chu S 2002 Phys. Scr. 2002 82

    [24]

    McGuirk J M, Snadden M J, Kasevich M A 2000 Phys. Rev. Lett. 85 4498

    [25]

    Müller H, Chiow S w, Long Q, Herrmann S, Chu S 2008 Phys. Rev. Lett. 100 180405

    [26]

    Cladé P, Andia M, Guellati-Khélifa S 2017 Phys. Rev. A 95 063604

    [27]

    Morel L, Yao Z, Cladé P, Guellati-Khélifa S 2020 Nature 588 61

    [28]

    Rui Y, Zhang L, Li R, Liu X, Duan C, Liu P, Wu Y, Wu H 2023 Phys. Rev. Res. 5 023052

    [29]

    Cassella K, Copenhaver E, Estey B, Feng Y, Lai C, Müller H 2017 Phys. Rev. Lett. 118 233201

    [30]

    Grynberg G, Courtois J Y 1994 Europhys. Lett. 27 41

    [31]

    Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408

    [32]

    Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411

    [33]

    Gustavsson M, Haller E, Mark M J, Danzl J G, Rojas-Kopeinig G, Nägerl H C 2008 Phys. Rev. Lett. 100 080404

    [34]

    Roati G, de Mirandes E, Ferlaino F, Ott H, Modugno G, Inguscio M 2004 Phys. Rev. Lett. 92 230402

    [35]

    Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001 Phys. Rev. Lett. 87 140402

    [36]

    Choi D I, Niu Q 1999 Phys. Rev. Lett. 82 2022

    [37]

    Berg-Sørensen K, Mølmer K 1998 Phys. Rev. A 58 1480

    [38]

    Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B 35 3095

    [39]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002

    [40]

    Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. A 74 052109

    [41]

    Wannier G H 1937 Phys. Rev. 52 191

    [42]

    Cohen-Tannoudji C, Dupont-Roe J, Grynberg G 1998(John Wiley&Sons, Ltd), pp 67-163

  • [1] 王恩龙, 王国超, 朱凌晓, 卞进田, 莫小娟, 孔辉. 一种面向原子干涉仪均匀量子非破坏测量的光学环形腔.  , doi: 10.7498/aps.74.20241348
    [2] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法.  , doi: 10.7498/aps.71.20220147
    [3] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理.  , doi: 10.7498/aps.71.20220071
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验.  , doi: 10.7498/aps.71.20211449
    [5] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术.  , doi: 10.7498/aps.70.20210432
    [6] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究.  , doi: 10.7498/aps.70.20211449
    [7] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量.  , doi: 10.7498/aps.70.20201522
    [8] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量.  , doi: 10.7498/aps.69.20191765
    [9] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用.  , doi: 10.7498/aps.68.20190443
    [10] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , doi: 10.7498/aps.67.20181121
    [11] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验.  , doi: 10.7498/aps.67.20180621
    [12] 付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛. 利用Sagnac干涉仪实现光子轨道角动量分束器.  , doi: 10.7498/aps.64.130704
    [13] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁.  , doi: 10.7498/aps.63.153701
    [14] 商娅娜, 王 东, 闫智辉, 王文哲, 贾晓军, 彭堃墀. 利用非平衡光纤Mach-Zehnder干涉仪探测频率非简并纠缠态光场.  , doi: 10.7498/aps.57.3514
    [15] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , doi: 10.7498/aps.57.808
    [16] 柴路, 何铁英, 杨胜杰, 王清月, 张志刚. 光谱位相干涉仪参数的优化选取.  , doi: 10.7498/aps.53.114
    [17] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨.  , doi: 10.7498/aps.46.1062
    [18] 权夕祖. 扫描球面-平面干涉仪.  , doi: 10.7498/aps.24.375
    [19] 胡建芳, 韦钦, 张志三. 锗红外干涉仪.  , doi: 10.7498/aps.20.1164
    [20] 周光召, 戴元本. μ介子与轻原子核散射时的反冲效应.  , doi: 10.7498/aps.16.76
计量
  • 文章访问数:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-03

/

返回文章
返回
Baidu
map