-
Atom interferometer enables high-precision measurement of recoil frequency, which is crucial for determining the fine structure constant. Large momentum transfer (LMT) based on Bloch oscillations in atom interferometers can significantly enhance the measurement precision of the recoil frequency. Typically, applying Bloch oscillations to an atomic ensemble requires the atoms to be cooled within the first Brillouin zone. However, deep cooling of lithium atoms is challenging, making it diffcult to directly apply Bloch oscillations. Therefore, this paper develops an LMT technique based on Bloch oscillations in a relatively high-temperature ensemble of 6Li atoms. By constructing a deep potential optical lattice, the high-temperature atoms can be effciently loaded into the lattice. Subsequently, the optical lattice is adiabatically chirped to suppress interband transitions of the atoms and enable atoms to accelerate with the lattice. Although the effciency of a single Bloch oscillation decreases under the tight-binding approximation, this method simultaneously relaxes the temperature requirements of the LMT technique. Consequently, we achieve a large momentum transfer of 40 recoil momenta at 80 μK (far above the recoil temperature), with the number of transferred atoms reaching up to 5 × 106. Subsequent analysis of the atomic momentum spectrum before and after the Bloch oscillations revealed that, due to Doppler broadening, the atomic momentum shows a continuous distribution between the initial momentum and the target momentum, which limits the momentum transfer effciency. It was found that for a fixed optical lattice depth and pulse duration, the momentum distribution of atoms participating in the Bloch oscillations is independent of the number of oscillations. Furthermore, atoms with initial velocities aligned with the acceleration direction of the optical lattice are more easily accelerated. This LMT technique is expected to substantially enhance the measurement precision of the 6Li atomic recoil frequency, providing an important reference for the subsequent high-precision calibration of the fine structure constant using 6Li atom interferometers.
-
Keywords:
- atom interferometer /
- recoil frequency /
- Bloch oscillation /
- large momentum transfer
-
[1] Liu W, Boshier M G, Dhawan S, Van Dyck O, Egan P, Fei X, Perdekamp M G, Hughes V, Janousch M, Jungmann K, et al. 1999 Phys. Rev. Lett. 82 711
[2] Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009
[3] Dirac P A M 1928 Proc. R. Soc. Lond. A. 117 610
[4] Uzan J P 2011 Living Rev. Relativ. 14 1
[5] Khorev V N, Shifrin V, Shubin S A, Park P G 2010 In CPEM 2010.(IEEE), pp 314-315
[6] Shields J, Dziuba R, Layer H 2002 IEEE Trans. Instrum. Meas. 38 249
[7] Jeffery A, Elmquist R E, Shields J Q, Lee L H, Cage M E, Shields S H, F D R 1998 Metrologia 35 83
[8] Van Dyck R S, Schwinberg P B, Dehmelt H G 1987 Phys. Rev. Lett. 59 26
[9] Hanneke D, Fogwell S, Gabrielse G 2008 Phys. Rev. Lett. 100 120801
[10] Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807
[11] Williams E, Jones G, Ye S, Liu R, Sasaki H, Olsen P, Phillips W, Layer H 1989 IEEE Trans. Instrum. Meas. 38 233
[12] Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L, Biraben F 2004 Phys. Rev. Lett. 92 253001
[13] Cadoret M, de Mirandes E, Cladé P, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2008 Phys. Rev. Lett. 101 230801
[14] Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. Lett. 96 033001
[15] Cladé P, Nez F, Biraben F, Guellati-Khélifa S 2019 C. R. Physique. 20 77
[16] Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101
[17] Zheng X, Sun Y, Chen J J, Hu S M 2018 Acta Phys. Sin. 67 164203(in Chinses)[郑昕,孙羽,陈娇 娇,胡水明2018 67 164203]
[18] Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113 023005
[19] Rosi G, D'Amico G, Cacciapuoti L, Sorrentino F, Prevedelli M, Zych M, Brukner Č, Tino G M 2017 Nat. Commun. 8 15529
[20] Mills I M, Mohr P J, Quinn T J, Taylor B N, Williams E R 2011 Phil. Trans. R. Soc. A. 369 3907
[21] Weiss D S, Young B C, Chu S 1993 Phys. Rev. Lett. 70 2706
[22] Taylor B N 1994 Metrologia 31 181
[23] Wicht A, Hensley J M, Sarajlic E, Chu S 2002 Phys. Scr. 2002 82
[24] McGuirk J M, Snadden M J, Kasevich M A 2000 Phys. Rev. Lett. 85 4498
[25] Müller H, Chiow S w, Long Q, Herrmann S, Chu S 2008 Phys. Rev. Lett. 100 180405
[26] Cladé P, Andia M, Guellati-Khélifa S 2017 Phys. Rev. A 95 063604
[27] Morel L, Yao Z, Cladé P, Guellati-Khélifa S 2020 Nature 588 61
[28] Rui Y, Zhang L, Li R, Liu X, Duan C, Liu P, Wu Y, Wu H 2023 Phys. Rev. Res. 5 023052
[29] Cassella K, Copenhaver E, Estey B, Feng Y, Lai C, Müller H 2017 Phys. Rev. Lett. 118 233201
[30] Grynberg G, Courtois J Y 1994 Europhys. Lett. 27 41
[31] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408
[32] Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411
[33] Gustavsson M, Haller E, Mark M J, Danzl J G, Rojas-Kopeinig G, Nägerl H C 2008 Phys. Rev. Lett. 100 080404
[34] Roati G, de Mirandes E, Ferlaino F, Ott H, Modugno G, Inguscio M 2004 Phys. Rev. Lett. 92 230402
[35] Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001 Phys. Rev. Lett. 87 140402
[36] Choi D I, Niu Q 1999 Phys. Rev. Lett. 82 2022
[37] Berg-Sørensen K, Mølmer K 1998 Phys. Rev. A 58 1480
[38] Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B 35 3095
[39] Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002
[40] Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. A 74 052109
[41] Wannier G H 1937 Phys. Rev. 52 191
[42] Cohen-Tannoudji C, Dupont-Roe J, Grynberg G 1998(John Wiley&Sons, Ltd), pp 67-163
计量
- 文章访问数: 31
- PDF下载量: 2
- 被引次数: 0








下载: