搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

官能团层间掺杂对双层石墨烯界面结构及其电子态调控研究

苗亚萍 肖淑莉 吴帆 樊威

引用本文:
Citation:

官能团层间掺杂对双层石墨烯界面结构及其电子态调控研究

苗亚萍, 肖淑莉, 吴帆, 樊威

Study on the Effects of Interlayer Doping with Functional Groups on the Structural Stability and Electronic Structure of Bilayer Graphene

Miao Yaping, Shuli Xiao, Fan Wu, Wei Fan
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 双层石墨烯(BLG)的层自由度为调控其性质提供了新的维度,对其层间进行掺杂修饰,是调控其层间耦合作用及电子结构的有效手段。本文基于密度泛函理论的第一性原理计算方法,系统探究了官能团-OH、-CO、-CHO及-COOH插入BLG层间后,对BLG结构稳定性与电子特性的调控规律及作用机制。计算分析表明,-OH和-CHO在层间插入BLG更稳定,界面结合能更低,-CO和-COOH插入后则使BLG的稳定性变差。BLG的费米能级因官能团插入发生不同程度偏移,当-OH或-COOH插入后,费米能级向低能级移动,电子占据的最高能级降低;当-CO或-CHO插入后,费米能级向高能级移动,更多电子被激发至较高能级,使电子填充到更高能级。官能团使BLG的能带结构显著变化,原有的抛物线型能带形态受干扰,能带分布更趋复杂,线条的走向与交叉特征改变。分态密度(PDOS)和电荷密度差分计算结果显示,官能团与BLG之间存在轨道杂化及电荷转移,四种官能团均与BLG的碳原子形成共价键,表现为化学吸附特征,且不同官能团的电荷转移程度和对电荷密度的扰动存在显著差异。研究成果将为BLG基电子器件的设计与开发提供一定的理论支撑。
    Among the graphene family, bilayer graphene (BLG) exhibits more diverse electronic structures and higher tunability than monolayer graphene due to its unique interlayer coupling effect, emerging as a crucial branch in functionalization research. By utilizing its interlayer as an embedding channel, BLG avoids impairing graphene's intrinsic conductivity-a common issue with surface modification. Furthermore, the interlayer coupling allows for synergistic engineering of its electronic structure, yielding performance superior to that of monolayer graphene. Therefore, the interface of BLG represents a potential functionalization site. Based on the aforementioned research status and issues, all calculations in this study are performed using density functional theory (DFT) via the Vienna Ab-initio Simulation Package (VASP). To accurately describe the van der Waals (vdW) interactions (π-π stacking) between the layers of AB-stacked BLG, the DFT-D3 method is employed for vdW correction to investigate the influence of functional groups on BLG electrical properties. This study focuses on four functional groups (-OH, -CO, -CHO, and -COOH), whose contained O and H atoms can readily form chemical bonds with the carbon atoms in BLG. Through interlayer modification, the interactions between these functional groups and the carbon atoms are analyzed to realize the regulation of interlayer coupling and electronic structure characteristics of BLG. The insertion of -OH and -CHO into the interlayer of BLG results in higher stability and lower interfacial binding energy, whereas the insertion of -CO and -COOH leads to reduced stability. The Fermi level of BLG shifts to varying degrees upon the insertion of functional groups. Specifically, the insertion of -OH or -COOH causes the Fermi level to shift toward lower energy levels, reducing the highest occupied energy level. In contrast, the insertion of -CO or -CHO shifts the Fermi level toward higher energy levels, exciting more electrons to higher energy states and resulting in electron filling at elevated energy levels. The band structure of BLG undergoes significant modifications due to the insertion of functional groups. The original parabolic band dispersion is disrupted, and the band distribution becomes more complex, with altered line trajectories and crossing characteristics. Partial density of states (PDOS) and charge density difference calculations reveal orbital hybridization and charge transfer between the functional groups and BLG. All four functional groups form covalent bonds with the carbon atoms of BLG, exhibiting characteristics of chemical adsorption. Moreover, the extent of charge transfer and the perturbation of charge density vary significantly among the different functional groups. This study aims to elucidate the regulatory mechanisms and underlying principles of functional groups, providing a theoretical basis for designing BLG-based electronic materials with specific functionalities, while also enriching the research framework of interlayer functionalization in two-dimensional layered materials.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    De Fazio D, Purdie D G, Ott A K, Braeuninger-Weimer P, Khodkov T, Goossens S, Taniguchi T, Watanabe K, Livreri P, H. L. Koppens F, Hofmann S, Goykhman I, C. Ferrari A, Lombardo A 2019 ACS nano 13 8926

    [3]

    Tyagi A, Martini L, Gebeyehu Z M, Miseikis V, Coletti C 2024 ACS Appl. Nano Mater. 7 18329

    [4]

    Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim, P 2009 Nature 462 196

    [5]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot, B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594

    [6]

    Delagrange R, Garg M, Le Breton G, Zhang A, Dong Q, Jin Y, Watanabe K, Taniguchi T, Roulleau P, Maillet O, Roche P, Parmentier FD 2024 Nat. Phys. 20 1927

    [7]

    Fu X B, Liu Y, Wang X D, Kang L, Qiu T J 2025 Appl. Energy 386 125566

    [8]

    Geim A K 2009 Science 324 1530

    [9]

    Hu X X, Tan L L, Wu X Z, Wang J Q 2023 Nano Res. 16 8512

    [10]

    Bonaccorso F, Lombardo A, Hasan T, Sun Z P, Colombo L, Ferrari A C 2020 2D Mater. 7 022001

    [11]

    Döscher H, Schmaltz T, Neef C, Thielmann A, Reiss T 2021 2D Mater. 8 022005

    [12]

    Xiong Z Y, Shen L Y, Long J, Li X, Zhou K, Choi M, Ou K T, Yang G Y, Ma W C, Lee H S, Sun Y Y, Li D 2024 Nat. Commun. 15 10807

    [13]

    Li S J, Yan J, Zhang Y F, Qin Y H, Zhang Y L, Du S G 2023 J. Mol. Liq. 377 121569

    [14]

    Suter J L, Sinclair R C, Coveney P V 2020 Adv. Mater. 32 2003213

    [15]

    Wang H, Wang X Y, Xiong Y, Cui J S 2024 Chin. J. Appl. Chem. 41 1712 (in Chinese) [王昊, 王熙宇, 熊英, 崔俊硕 2024 应用化学 12 1712]

    [16]

    Wang Y, Xia W J, Giuntoli A 2025 Macromolecules 58 2224

    [17]

    Chen C X, Lin Y, Zhou W, Gong M, He Z Y, Shi F Y, Li X Y, Wu J Z, Lam K T, Wang J N, Yang F, Zeng Q S, Guo J, Gao W P, Zuo J M, Liu J, Hong G S, Antaris A L, Lin M C, Mao W D L, Dai H J 2021 Nat. Electron. 4 653

    [18]

    Zhao J, Ji P X, Li Y Q, Zhang K M, Tian H, Yu K C, Bian B Y, Hao L Z, Xiao X, Griffin W, Dudeck N, Moro Ramiro, Ma L, Heer W A 2024 Nature 625 60

    [19]

    Shen J C, Fu W J, Wei W, Qian C, Ni G X, Zhu D 2025 Biosens. Bioelectron. 280 117426

    [20]

    Nan Y L, Li B, Zhang X J, Song X L 2018 J. Nanopart. Res. 20 274

    [21]

    Yang Q S, Gong Q Y, Kang H M, Ji S M, Li Z Y, Kim J M, Song Y J 2024 Diam. Relat. Mater. 144 111043

    [22]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [23]

    Kumar Ravi, Srivastav S K, Roy U, Singhal U, Watanabe K, Taniguchi T, Singh V, Roulleau P, Das A 2024 Nat. Phys. 20 1941

    [24]

    Zhu X L, Su Z K, Tan R, Guo C L, Ai X P, Qian J F 2024 J. Am. Chem. Soc. 146 6388

    [25]

    Zhang X W, Zhou T, Ren Y L, Feng Z, Qiao R X, Wang Q H, Wang B, Bai J X, Wu M H, Tang Z L, Zhou X, Liu K H, Xu X Z 2024 Nano Res. 17 4616

    [26]

    Liu S, He B Z, Yang W, Zhou X H, Xue X D, Liu M Y, Zhao Y, Wang X H, Si J, Wang F Y, Zhang Z Y, Peng L M, Yu G 2024 Adv. Mater. 36 2312125

    [27]

    Lai X Y, Li G H, Coe A M, Pixley J H, Watanabe K, Taniguchi T, Andrei E Y 2025 Nature Mater. 24 1019

    [28]

    Astles T, Mchugh J G, Zhang R, Guo Q, Howe M, Wu Z F, Indykiewicz K, Summerfield A, Goodwin ZAH, Slizovskiy S, Domaretskiy D, Geim A K, Falko V, Grigorieva I V 2024 Nat. Commun. 15 6933

    [29]

    Endo Y, Yan X, Li M, Akiyama R, Brandl C, Liu J Z, Hobara R, Hasegawa S, Wan W S, Novoselov K, Tang W X 2023 Nature Nanotech. 18 1154

    [30]

    Wu X, Zheng F W, Kang F Y, Li J 2023 Phys. Rev. B 107 165409

    [31]

    Xuan N N, Xie A Z, Liu B, Sun Z Z 2023 Carbon 201 529

    [32]

    Zhang M W, Han N N, Wang J, Zhang Z H, Liu K H, Sun Z P, Zhao J L, Gan X T 2022 Nano Lett. 22 4287

    [33]

    Pang J S, Shi R R, Xie H A, Chen H P, Zhang X, Zhao D D, Shi C S, He C N, Zhao N Q, Liu E Z 2024 Appl. Surf. Sci. 644 158762

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [35]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [36]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [38]

    Grimme S, Mu1ck-Lichtenfeld C, Antony J 2007 J. Phys. Chem. C 111 11199

    [39]

    Antony J, Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722

    [40]

    Denis P A 2023 Comput. Theor. Chem. 1221 114035

    [41]

    Ji D P, Xu Q L, Xian L D 2025 Adv. Funct. Mater. 35 2419321

    [42]

    Shin J, Chittari B L, Jang Y S, Min H K, Jung J 2022 Phys. Rev. B 105 245124

    [43]

    Wu J B, Zhang X, Tan P H, Feng Z H, Li J 2013 Acta Phys. Sin. 62 157302 (in Chinese) [吴江滨, 张昕, 谭平恒, 冯志红, 李佳 2013 62 157302]

    [44]

    Liu Y J, Chen Y W, Zhu Y J, Huang Y, An D D, Li Q X, Gan Q K, Zhu W, Song J W, Wang K Y, Wei L N, Zong Q J, Liu S H, Li S W, Liu Zhi, Zhang Q, Xu Y H, Cao X Y, Yang A, Wang H L, Yang B, Shen A, Yu G L, Wang L 2023 Acta Phys. Sin. 72 147303 (in Chinese) [刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷 2023 72 147303]

  • [1] 田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊. Au/CeO2(111)表面吸附的电荷转移特性.  , doi: 10.7498/aps.74.20241522
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , doi: 10.7498/aps.71.20211631
    [3] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究.  , doi: 10.7498/aps.70.20210621
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , doi: 10.7498/aps.70.20211631
    [5] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , doi: 10.7498/aps.68.20190523
    [6] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究.  , doi: 10.7498/aps.67.20180759
    [7] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算.  , doi: 10.7498/aps.67.20172220
    [8] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究.  , doi: 10.7498/aps.66.107102
    [9] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.62.073101
    [10] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究.  , doi: 10.7498/aps.62.056105
    [11] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , doi: 10.7498/aps.61.036105
    [12] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.59.4930
    [13] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , doi: 10.7498/aps.59.3426
    [14] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , doi: 10.7498/aps.59.2051
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , doi: 10.7498/aps.59.515
    [16] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , doi: 10.7498/aps.58.1173
    [17] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , doi: 10.7498/aps.57.7827
    [18] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , doi: 10.7498/aps.57.1078
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , doi: 10.7498/aps.57.7794
    [20] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性.  , doi: 10.7498/aps.54.2859
计量
  • 文章访问数:  29
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-04

/

返回文章
返回
Baidu
map