-
在后摩尔时代, 随着器件物理尺寸的缩放极限和冯·诺依曼架构的局限性逐渐显现, 传统硅基集成电路领域面临严峻挑战. 然而, 二维层状材料凭借无悬挂键、高载流子迁移率、高光生载流子浓度等独特的物理特性, 有望突破这些瓶颈. 目前, 许多二维材料已经实现了规模化生长与应用, 在高性能单一功能器件、多功能融合器件、逻辑电路和集成芯片制造与应用当中展现出巨大的潜力. 本文综述了二维材料的基本特性、构成的基础功能器件、功能电路模块以及三维集成等方面的研究进展, 重点探讨了二维材料在规模化集成方案方面的挑战和解决路径, 并为未来的发展方向提出了展望.
As Moore's Law encounters limitations in scaling device physical dimensions and reducing computational power consumption, traditional silicon-based integrated circuit (IC) technologies, which have enjoyed half a century of success, are facing unprecedented challenges. These limitations are especially apparent in emerging fields such as artificial intelligence, big data processing, and high-performance computing, where the demand for computational power and energy efficiency is growing. Therefore, the exploration of novel materials and hardware architectures is crucial to address these challenges. Two-dimensional (2D) materials have become ideal candidates for the next-generation electronic devices and integrated circuits (ICs) due to their unique physical properties such as the absence of dangling bonds, high carrier mobility, tunable band gaps, and high photonic responses. Notably, 2D materials such as graphene, transition metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN) have demonstrated immense potential in electronics, optoelectronics, and flexible sensing applications. This paper comprehensively reviews the recent advancements in the application of 2D materials in integrated circuits, analyzing the challenges and solutions related to large-scale integration, device design, functional circuit modules, and three-dimensional integration. Through a detailed examination of the basic properties of 2D materials, their constituent functional devices, and multifunctional integrated circuits, this paper presents a series of innovative ideas and methods, demonstrating the promising application prospects of 2D materials in future ICs. The research method involves a detailed analysis of the physical properties of common 2D materials such as graphene, TMDs, and h-BN, with typical application cases explored. This paper discusse how to utilize the excellent properties of these materials to fabricate high-performance single-function devices, integrated circuit modules, and 3D integrated chips, especially focusing on solving the challenges related to large-scale growth, device integration, and interface engineering of 2D materials. The comparison of the performance and applications between various materials demonstrates the unique advantages of 2D materials in the semiconductor industry and their potential in IC design. Although 2D materials perform well in laboratory environments, there are still significant challenges in practical applications, especially in large-scale production, device integration, and three-dimensional integration. Achieving high-quality, large-area growth of 2D materials, reducing interface defects, and improving device stability and reliability are still core issues that need to be addressed in research and industry. However, with the continuous advancements in 2D material fabrication technology and optimization of integration processes, these challenges are gradually being overcome, and the application prospects of 2D materials are expanding. -
Keywords:
- two-dimensional materials /
- basic functional devices /
- logic circuits /
- large-scale integration
-
图 2 (a) MoS2的三维结构图[36]; (b) 2H, 1T和1T'相单层TMDs的原子结构, 图中指出了晶格矢量与原子平面的堆叠方式[29]; (c) 计算得到的厚度递减的2H-MoS2样品的能带结构的演化[29]
Fig. 2. (a) 3D structure of molybdenum disulphide[36]; (b) atomic structure of single layers of TMDs in their trigonal prismatic (2H), distorted octahedral (1T) and dimerized (1T') phases, lattice vectors and the stacking of atomic planes are indicated[29]; (c) evolution of the band structure of 2H‑MoS2 calculated from samples of decreasing thickness[29].
图 3 逻辑器件的结构示意图与电学特性 (a) MoS2 n型晶体管[52]; (b) WSe2 p型晶体管[56]; (c) ReSe2双极性晶体管[59]; (d) WSe2同质结晶体管[60]
Fig. 3. Schematic diagram and electrical characteristics of logic devices: (a) MoS2 n-type transistor[52]; (b) WSe2 p-type transistor[56]; (c) ReSe2 bipolar transistor[59]; (d) WSe2 Homojunction transistor[60].
图 4 存储器件的结构示意图与电学特性 (a) InSe/hBN/MLG浮栅型闪存[69]; (b) WSe2/Al2O3/HfO2/Al2O3电荷俘获型闪存[71]; (c) InSe/h-BN/CIPS铁电存储器[73]; (d) 3R-MoS2滑移铁电存储器[74]; (e) MoTe2相变型忆阻器[76]; (f) Ag/h-BN/Au导电细丝型忆阻器[77]
Fig. 4. Schematic diagram and electrical characteristics of memory devices: (a) InSe/hBN/MLG floating gate flash memory[69]; (b) WSe2/Al2O3/HfO2/Al2O3 charge trapping flash memory[71]; (c) InSe/h-BN/CIPS ferroelectric memory[73]; (d) 3R-MoS2 sliding ferroelectric memory[74]; (e) MoTe2 phase change memristor[76]; (f) Ag/h-BN/Au conductive filaments memristor[77].
图 6 多功能融合器件的构示意图与电学特性 (a) WSe2/LNO铁电晶体管[95]; (b) Bi2O2Se/h-BN/Gr光电浮栅晶体管[96]; (c) NbOI2双模态突触晶体管[97]
Fig. 6. Schematic diagram and electrical characteristics of multifunctional hybrid devices: (a) WSe2/LNO ferroelectric transistor[95]; (b) Bi2O2Se/h-BN/graphene photonic floating-gate transistor[96]; (c) NbOI2 bimodal synaptic transistor[97].
图 7 神经形态器件突触和神经元的结构示意图与电学特性 (a) WS2忆阻器突触[101]; (b) MoS2浮栅突触[102]; (c) HZO/SnS2铁电突触[103]; (d) MoS2/h-BN/Gra神经元[104]; (e) WSe2冲击电离晶体管神经元[105]
Fig. 7. Schematic diagram of synapse and neuron structures in neuromorphic devices and their electrical characteristics: (a) WS2 memristor synapse[101]; (b) MoS2 floating-gate synapse[102]; (c) HZO/SnS2 ferroelectric synapse[103]; (d) MoS2/h-BN/graphene neuron[104]; (e) WSe2 impact ionization transistor neuron[105].
图 8 (a) 内存逻辑单元阵列的制造的12 mm×12 mm芯片的照片[114]; (b) 基于 MOCVD生长的单层MoS2的浮栅存储器件的三维视图[115]; (c) NAND FET[115]; (d) OR-FET [115]; (e) OR-FET[115]
Fig. 8. (a) Photograph of a fabricated 12 mm×12 mm die with logic-in-memory cell arrays [114]; (b) 3D view of a floating gate memory device based on monolayer MoS2 grown by MOCVD[115]; (c) NAND FET[115]; (d) OR-FET[115]; (e) OR-FET [115].
图 10 (a) SRAM电路图[117]; (b) SRAM器件图[117]; (c) 异构2T-eDRAM的示意图[118]; (d) 相应的等效电路图[118]; (e) Si-MoS2 异构垂直2T-eDRAM的示意图[118]; (f) 2T-eDRAM的SEM图像[118]
Fig. 10. (a) SRAM circuit diagram[117]; (b) SRAM device diagram[117]; (c) schematic diagram of the heterogeneous 2T-eDRAM[118]; (d) corresponding equivalent circuit diagram[118]; (e) schematic diagram of the Si-MoS2 heterogeneous vertical 2T-eDRAM[118]; (f) SEM image of the 2T-eDRAM[118].
图 11 (a) 运算放大器的实验装置[95]; (b) 运算放大器相应的等效电路图[95]; (c) 运算放大器的光学图像[119]; (d) 原始长度为50 mm的未弯曲CPW TL[119]; (e) 弯曲的CPW TL, 端口到端口的距离为40 mm[119]; (f) 弯曲的CPW TL, 端口到端口的距离为30 mm[119]; (g) 弯曲的CPW TL, 端口到端口的距离为20 mm[119]
Fig. 11. (a) Experimental setup of the operational amplifier[95]; (b) corresponding equivalent circuit diagram of the operational amplifier[95]; (c) optical image of the operational amplifier[119]; (d) unbent CPW TL with an original length of 50 mm[119]; (e) bent CPW TL with a port-to-port distance of 40 mm[119]; (f) bent CPW TL with a port-to-port distance of 30 mm[119]; (g) bent CPW TL with a port-to-port distance of 20 mm[119].
图 12 (a) 多聚物辅助的转移方法[129]; (b) 由MoS2 FETs与VRRAMs单片3D集成的1T-4R结构[132]; (c) 单片3D集成的CMOS与非门示意图[133]; (d) 通过范德瓦耳斯层压制作的10层单片3D集成系统[136]
Fig. 12. (a) Polymer-assisted transfer[129]; (b) monolithic 3D integration of MoS2 transistors and VRRAMs into a 1T-4R structure[132]; (c) schematic of a monolithic 3D-integrated CMOS NAND circuit[133]; (d) schematic of a 10-tier monolithic 3D system integrated by van der Waals lamination[136].
图 13 (a) 单晶TMD阵列的低温生长示意图, 突出展示了在图案化结构的边缘或角落成核的趋势[137]; (b) 无缝单片3D集成示意图[137]
Fig. 13. (a) Schematic showing low-temperature growth of single-crystalline TMD array, highlighting the tendency of nuclei to form at edges or corners of the patterned structure[137]; (b) schematic of seamless monolithic 3D integration[137].
图 14 (a) 用于光电器件的二维材料与硅基CMOS电路的3D集成[139]; (b) SOI-MoS2异质3D堆叠CFET示意图[140]; (c) 二维材料-硅基电路异质3D集成流程图[140]; (d) 由14层vdW异质结构垂直堆叠搭建的3D与非逻辑门[145]
Fig. 14. (a) 3D integration of 2D materials with silicon logic for optoelectronics[139]; (b) schematic of the SOI-MoS2 heterogeneous 3D-stacked CFET[140]; (c) schematic of the 2D-silicon heterogeneous 3D integration process[140]; (d) 3D NAND logic made of vertically stacked 14-layer vdW heterostructure[145].
图 15 二维材料的集成应用 (a) 基于二维材料的逻辑芯片[151]; (b) 基于二维材料的边缘AI芯片[157]; (c) 基于二维材料的柔性电子[161]; (d) 基于二维材料的感算一体[169]; (e) 基于二维材料的光电芯片[171]
Fig. 15. Integrated applications of two-dimensional materials: (a) Logic chips based on two-dimensional materials[151]; (b) edge AI chips based on two-dimensional materials[157]; (c) flexible electronics based on two-dimensional materials[161]; (d) sensing-computing integration based on two-dimensional materials[169]; (e) optoelectronic chips based on two-dimensional materials[171].
表 1 二维材料电学性质对比
Table 1. Comparison of the electronic properties of 2D materials.
材料类型 材料名称 带隙/eV 迁移率
/cm2·(V·s)–1开关比 文献 单元素
二维材料石墨烯 0 2×104 100 [24] 黑磷 0.3—2 ~103 106 [39] 碲 0.31—0.92 1485 ~104 [40] 硅烯 1.1 329 ~106 [41] TMDs MoS2 1.8 217 >106 [30] WSe2 1.2—1.6 ~250 108 [32] HfS2 ~1.45 7.6 >108 [42] III-VI族
化合物GaTe 1.7 0.2 — [43] InSe ~1.26 103—104 108 [44] 二维
氮化物GaN ~5.0 160 ~106 [45] h-BN 5.95—6.1 — — [37] 二维金属
氧化物MoO3 3.3 1. 1×103 <103 [46] 二维有机
化合物Ni3(HITP)2 — 45.4 2.29×103 [47] 表 2 二维材料与传统硅基材料晶体管性能对比
Table 2. Comparison of performance between two-dimensional materials and traditional silicon-based materials in transistors.
材料类型 材料名称 器件沟道尺寸/nm 跨导/(μS·μm–1) 亚阈值摆幅/(mV·dec–1) 开关比 静态功耗/W 文献 Si基 MOS 45 ~0. 1 / <105 < 10–9 [61] GAA-Si 4560 15 63 1010 < 10–11 [62] Fin-Si 14+24×2 433.87 67.02 107 < 10–13 [63] TMDs 2L-MoS2 400 ~10 65 106 < 10–13 [64] 1L-MoS2 — ~10 76 108 < 10–15 [52] 2L-WSe2 120 80 200 108 < 10–10 [65] ML-WSe2 1500 — 875 107 < 10–13 [66] Ⅲ—Ⅵ族化合物 InSe 10 6000 75 107 < 10–15 [67] 表 3 二维材料与传统硅基材料非易失器件性能对比
Table 3. Comparison of performance between two-dimensional materials and traditional silicon-based materials in non-volatile devices.
表 4 二维材料的集成应用总结
Table 4. Summary of integrated applications of two-dimensional materials.
材料 集成方法 器件数量 单元器件平均面积/μm2 应用领域 参考文献 MoS2 生长 115 5217 逻辑 [149] MoS2 生长 156 — 逻辑 [150] MoS2 生长 5900 1525 逻辑 [151] h-BN 2D+CMOS — 0.053(功能区) 边缘AI [155] HfSe2 转移 1024 1503 边缘AI [156] WSe2/h-BN/ MoS2 转移 — 250000 边缘AI [157] MoS2 转移 — — 柔性电子 [159] MoS2 转移 — 30000 柔性电子 [160] MoS2 转移 100+ 15600 柔性电子 [161] 石墨烯 2D+CMOS 101124 3(功能区) 光电芯片 [165] 石墨烯 2D+CMOS 16 111111 光电芯片 [166] h-BN 2D+CMOS — 3.14(功能区) 光电芯片 [167] WSe2 2D+CMOS 9 115.5 感算一体 [169] HbS2/MoS2 2D+CMOS 100 7412 感算一体 [170] MoS2 生长 619 11.650 感算一体 [171] -
[1] Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22
Google Scholar
[2] Kim K S, Kwon J, Ryu H, Kim C, Kim H, Lee E K, Lee D, Seo S, Han N M, Suh J M, Kim J, Song M K, Lee S, Seol M, Kim J 2024 Nat. Nanotechnol. 19 895
Google Scholar
[3] Thompson N C, Spanuth S 2021 Commun. ACM 64 64
[4] Kudithipudi D, Schuman C, Vineyard C M, Pandit T, Merkel C, Kubendran R, Aimone J B, Orchard G, Mayr C, Benosman R, Hays J, Young C, Bartolozzi C, Majumdar A, Cardwell S G, Payvand M, Buckley S, Kulkarni S, Gonzalez H A, Cauwenberghs G, Thakur C S, Subramoney A, Furber S 2025 Nature 637 801
Google Scholar
[5] Mehonic A, Kenyon A J 2022 Nature 604 255
Google Scholar
[6] Aslam Mohd, Raman A P S, Rana I, Singh M B, Ranjan K R, Verma C, AlFantazi A, Singh P, Kumari K 2025 Coordin. Chem. Rev. 543 216890
Google Scholar
[7] Aftab S, Hegazy H H 2023 Small 19 2205778
Google Scholar
[8] Naclerio A E, Kidambi P R 2023 Adv. Mater. 35 2207374
Google Scholar
[9] Qiu H, Yu Z H, Zhao T G, Zhang Q, Xu M S, Li P F, Li T T, Bao W Z, Chai Y, Chen S L, et al. 2024 Sci. China Inf. Sci. 67 160400
Google Scholar
[10] Wu Y W, Wu Y J, Li H M, Liu S 2025 Chip 100161
[11] Zhang Q M, Zhao Z H, Tao L 2025 Mater. Today Phys. 53 101710
Google Scholar
[12] Xie P S, Li D J, Wang W J, Ho J C 2025 Small 2503717
[13] Goel N, Kumar R 2025 Nano-Micro Lett. 17 197
Google Scholar
[14] Zhang L N, Dong J C, Ding F 2021 Chem. Rev. 121 6321
Google Scholar
[15] Knobloch T, Selberherr S, Grasser T 2022 Nanomaterials 12 3548
Google Scholar
[16] Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052
Google Scholar
[17] Zeng S F, Liu C S, Zhou P 2024 Nat. Rev. Electr. Eng. 1 335
Google Scholar
[18] Jiang J K, Parto K, Cao W, Banerjee K 2019 IEEE J. Electron Devices Soc. 7 878
Google Scholar
[19] Chiu M H, Zhang C, Shiu H W, Chuu C P, Chen C H, Chang C Y S, Chen C H, Chou M Y, Shih C K, Li L J 2015 Nat. Commun. 6 7666
Google Scholar
[20] Wang Y J, Liu E F, Liu H M, Pan Y M, Zhang L Q, Zeng J W, Fu Y J, Wang M, Xu K, Huang Z, Wang Z L, Lu H Z, Xing D Y, Wang B G, Wan X G, Miao F 2016 Nat. Commun. 7 13142
Google Scholar
[21] Jayachandran D, Sakib N U, Das S 2024 Nat. Rev. Electr. Eng. 1 300
Google Scholar
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
Google Scholar
[23] Avouris P 2010 Nano Lett. 10 4285
Google Scholar
[24] Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
Google Scholar
[25] Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[26] Hwang E H, Sarma S D 2008 Phys. Rev. B 77 115449
Google Scholar
[27] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308
Google Scholar
[28] Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545
Google Scholar
[29] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[30] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[31] Han G H, Duong D L, Keum D H, Yun S J, Lee Y H 2018 Chem. Rev. 118 6297
Google Scholar
[32] Dai C H, Liu Y Q, Wei D C 2022 Chem. Rev. 122 10319
Google Scholar
[33] Mak K F, Shan J 2016 Nat. Photon. 10 216
Google Scholar
[34] Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J, Hong S C 2011 Phys. Rev. B 84 045409
Google Scholar
[35] Jaikissoon M, Koroglu C, Yang J A, Neilson K, Saraswat K C, Pop E 2024 Nat. Electron. 7 885
Google Scholar
[36] Oviroh P O, Jen T C, Ren J W, Duin A V 2023 npj Clean Water 6 14
Google Scholar
[37] Roy S, Zhang X, Puthirath A B, Meiyazhagan A, Bhattacharyya S, Rahman M M, Babu G, Susarla S, Saju S K, Tran M K, Sassi L M, Saadi M A S R, Lai J W, Sahin O, Sajadi S M, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X T, Adumbumkulath A, Miller K A, Gayle J M, Ajnsztajn A, Prasankumar T, Harikrishnan V V J, Ojha V, Kannan H, Khater A Z, Zhu Z W, Iyengar S A, Autreto P A D S, Oliveira E F, Gao G H, Birdwell A G, Neupane M R, Ivanov T G, Taha-Tijerina J, Yadav R M, Arepalli S, Vajtai R, Ajayan P M 2021 Adv. Mater. 33 2101589
Google Scholar
[38] Chen Z W, Zhang J J, Wang S Z, Wong C P 2024 Fundament. Res. 4 1455
Google Scholar
[39] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2024 Nat. Nanotechnol. 9 372
[40] Huang X C, Guan J Q, Lin Z J, Liu B, Xing S Y, Wang W H, Guo J D 2017 Nano Lett. 17 4619
Google Scholar
[41] Lee J, Kwon J, Seo D, Na J, Park S, Lee H J, Lee S W, Lee K Y, Park T E, Choi H J 2019 ACS Appl. Mater. Interfaces 11 42512
Google Scholar
[42] Fu L, Wang F, Wu B, Wu N, Huang W, Wang H L, Jin C H, Zhuang L, He J, Fu L, Liu Y Q 2017 Adv. Mater. 29 1700439
Google Scholar
[43] Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752
Google Scholar
[44] Yang H W, Hsieh H F, Chen R S, Ho C H, Lee K Y, Chao L C 2018 ACS Appl. Mater. Interfaces 10 5740
Google Scholar
[45] Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166
Google Scholar
[46] Balendhran S, Deng J K, Ou J Z, Walia S, Scott J, Tang J S, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2012 Adv. Mater. 25 109
[47] Wang B F, Luo Y Y, Liu B, Duan G T 2019 ACS Appl. Mater. Interfaces 11 35935
Google Scholar
[48] Liu Y, Huang Y, Duan X F 2019 Nature 567 323
Google Scholar
[49] Kong L G, Chen Y, Liu Y 2021 Nano Res. 14 1768
Google Scholar
[50] Xue F, Zhang C H, Ma Y C, Wen Y, He X, Yu B, Zhang X X 2022 Adv. Mater. 34 2201880
Google Scholar
[51] Zhang J, Liu L, Yang Y, Huang Q W, Li D L, Zeng D W 2021 Phys. Chem. 23 1542
[52] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147
Google Scholar
[53] Chen R S, Ding G L, Zhou Y, Han S T 2021 J. Mater. Chem. C 9 11407
Google Scholar
[54] Tang L, Zou J Y 2023 Nano-Micro Lett. 15 230
Google Scholar
[55] Li X F, Wu Z H, Rzepa G, Karner M, Xu H Q, Wu Z C, Wang W, Yang G H, Luo Q, Wang L F, Li L 2025 Fundament. Res. 5 2149
Google Scholar
[56] Wang Y X, Qiu G, Wang R X, Huang S Y, Wang Q X, Liu Y Y, Du Y C, Goddard W A, Kim M J, Xu X F, Ye P D, Wu W Z 2018 Nat. Electron. 1 228
Google Scholar
[57] Lemme M C, Akinwande D, Huyghebaert C, Stampfer C 2022 Nat. Commun. 13 1392
Google Scholar
[58] Zhao Y H, Sun H R, Sheng Z, Zhang D W, Zhou P, Zhang Z X 2023 Chin. Phys. B 32 128505
Google Scholar
[59] Lee K C, Yang S H, Sung Y S, Chang Y M, Lin C Y, Yang F S, Li M J, Watanabe K, Taniguchi T, Ho C H, Lien C H, Lin Y F 2019 Adv. Funct. Materials 29 1809011
Google Scholar
[60] Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, Liu E F, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383
Google Scholar
[61] Sun Y L, Li M J, Ding Y T, Wang H P, Wang H, Chen Z M, Xie D 2022 InfoMat. 4 e12317
Google Scholar
[62] Liu Q, Mu Z, Liu C, Zhao L, Chen L, Yang Y, Wei X, Yu W 2021 IEEE Electron Device Lett. 42 657
Google Scholar
[63] Kaur G, Gill S S, Rattan M 2020 Int. J. Smart Sens. Int. 13 1
[64] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, Javey A 2016 Science 354 99
Google Scholar
[65] Shi X, Wang X, Liu S, Guo Q, Sun L, Li X, Huang R, Wu Y 2022 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1–5, 2022 p7.1. 1
[66] Resta G V, Sutar S, Balaji Y, Lin D, Raghavan P, Radu I, Catthoor F, Thean A, Gaillardon P E, De Micheli G 2016 Sci. Rep. 6 29448
Google Scholar
[67] Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470
Google Scholar
[68] Yu X X, Xu L L, Shi W H, Meng X H, Huang X Y, Peng Z R, Tong L, Sun H J, Miao X S, Ye L 2025 Mater. Horiz. 12 8409
Google Scholar
[69] Wu L M, Wang A W, Shi J N, Yan J H, Zhou Z, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Huang Y, Zhou W, Bao L H, Ouyang M, Pennycook S J, Pantelides S T, Gao H J 2021 Nat. Nanotechnol. 16 882
Google Scholar
[70] Wu H, Shi J K, Ye Z L, Yan Z 2025 Appl. Phys. Lett. 127 043101
Google Scholar
[71] Fan Z W, Qu J Y, Wang T, Wen Y, An Z W, Jiang Q T, Xue W H, Zhou P, Xu X H 2023 Chin. Phys. B 32 128508
Google Scholar
[72] Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802
Google Scholar
[73] Singh P, Baek S, Yoo H H, Niu J, Park J H, Lee S 2022 ACS Nano 16 5418
Google Scholar
[74] Li X Z, Qin B, Wang Y X, Xi Y, Huang Z H, Zhao M Z, Peng Y L, Chen Z T, Pan Z T, Zhu J D, Cui C Y, Yang R, Yang W, Meng S, Shi D X, Bai X D, Liu C, Li N, Tang J S, Liu K H, Du L J, Zhang G Y 2024 Nat. Commun. 15 10921
Google Scholar
[75] Ehman M M, Samad Y A, Gul J Z, Saqib M, Khan M, Shaukat R A, Chang R, Shi Y, Kim W Y 2025 Prog. Mater. Sci. 152 101471
Google Scholar
[76] Zhang F, Zhang H, Shrestha P R, Zhu Y, Maize K, Krylyuk S, Shakouri A, Campbell J P, Cheung K P, Bendersky L A, Davydov A V, Appenzeller J 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA December 1–5, 2018 p22. 7. 1
[77] Chen X, Yang D L, Hwang G, Dong Y J, Cui B B, Wang D C, Chen H G, Lin N, Zhang W Q, Li H H, Shao R W, Lin P, Hong H, Yao Y G, Sun L F, Wang Z R, Yang H 2024 ACS Nano 18 10758
Google Scholar
[78] Spassov D, Paskaleva A 2023 Nanomaterials 13 2456
Google Scholar
[79] Yu X Y, Ma Z Y, Shen Z X, Li W, Chen K J, Xu J, Xu L 2022 Nanomaterials 12 2459
Google Scholar
[80] Cao Y, Balijepalli A, Sinha S, Wang C C, Wang W P, Zhao W 2009 FNT Electron. Design Autom. 3 305
Google Scholar
[81] Huang X H, Liu C S, Tang Z W, Zeng S F, Wang S Y, Zhou P 2023 Nat. Nanotechnol. 18 486
Google Scholar
[82] Zhang D Z, Pan W J, Tang M C, Wang D Y, Yu S J, Mi Q, Pan Q N, Hu Y Q 2023 Nano Res. 16 11959
Google Scholar
[83] Lou Z, Liang Z Z, Shen G Z 2016 J. Semicond. 37 091001
Google Scholar
[84] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497
Google Scholar
[85] Yore A E, Smithe K K H, Jha S, Ray K, Pop E, Newaz A K M 2017 Appl. Phys. Lett. 111 043110
Google Scholar
[86] Shen S W, Wu W X, Yue X F, Qin S K, Sheng C X, Xia D C, Guo J Y, Chen J J, Han J K, Liu B J, Lu Y, Hu L G, Liu R, Qiu Z J, Cong C X 2025 Adv. Mater. Technol. 10 2500214
Google Scholar
[87] Hassan H U, Mun J, Kang B S, Song J Y, Kim T, Kang S W 2016 RSC Adv. 6 75839
Google Scholar
[88] Niu Y, Zeng J W, Liu X C, Li J L, Wang Q, Li H, Rooij N F D, Wang Y, Zhou G F 2021 Adv. Sci. 8 2100472
Google Scholar
[89] Venkatesan A, Ryu H, Devnath A, Yoo H, Lee S 2024 J. Mater. Sci. Technol. 168 79
Google Scholar
[90] Yang J, Luo S, Zhou X, Li J L, Fu J T, Yang W D, Wei D P 2019 ACS Appl. Mater. Interfaces 11 14997
Google Scholar
[91] Xu D D, Duan L, Yan S Y, Wang Y, Cao K, Wang W D, Xu H C, Wang Y J, Hu L W, Gao L B 2022 Micromachines 13 660
Google Scholar
[92] Daus A, Jaikissoon M, Khan A I, Kumar A, Grady R W, Saraswat K C, Pop E 2022 Nano Lett. 22 6135
Google Scholar
[93] Matthus C D, Chava P, Watanabe K, Taniguchi T, Mikolajick T, Helm M, Erbe A 2023 IEEE J. Electron Devices Soc. 11 359
Google Scholar
[94] Huang Z, Li Y, Zhang Y, Chen J, He J, Jiang J 2024 Int. J. Extrem. Manuf. 6 032003
Google Scholar
[95] Tong L, Peng Z R, Lin R F, Li Z, Wang Y L, Huang X Y, Xue K H, Xu H Y, Liu F, Xia H, Wang P, Xu M S, Xiong W, Hu W D, Xu J B, Zhang X L, Ye L, Miao X S 2021 Science 373 1353
Google Scholar
[96] Sun L, Xu Y S, Huo G H, Hou Y X, Li W, Zheng Y F, Shi J J, Jiang Y M, Su J, Zhuge F, Bando Y, Zhai T Y, Gao Y H, Wang Z L 2025 Nano Energy 143 111311
Google Scholar
[97] Wang M Q, Ouyang D C, Dai Y, Huo D, He W K, Song B L, Hu W H, Wu M H, Li Y, Zhai T Y 2025 Adv. Mater. 37 2500049
Google Scholar
[98] Hong Y W, Liu Y M, Li R N, Tian H 2024 J. Phys. Mater. 7 032001
Google Scholar
[99] Wang P F, Chen M Y, Xie Y Q, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J, Miao F 2023 Chin. Phys. Lett. 40 117201
Google Scholar
[100] 贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰 2024 73 207302
Google Scholar
Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302
Google Scholar
[101] Yan X B, Zhao Q L, Chen A P, Zhao J H, Zhou Z Y, Wang J J, Wang H, Zhang L, Li X Y, Xiao Z A, Wang K Y, Qin C Y, Wang G, Pei Y F, Li H, Ren D L, Chen J S, Liu Q 2019 Small 15 1901423
Google Scholar
[102] Park E, Kim M, Kim T S, Kim I S, Park J, Kim J, Jeong Y, Lee S, Kim I, Park J K, Kim G T, Chang J, Kang K, Kwak J Y 2020 Nanoscale 12 24503
Google Scholar
[103] Song C, Kim D, Lee S, Kwon H 2024 Adv. Sci. 11 2308588
Google Scholar
[104] Wang H, Lu Y L, Liu S B, Yu J, Hu M, Li S N, Yang R, Watanabe K, Taniguchi T, Ma Y, Miao X S, Zhuge F, He Y H, Zhai T Y 2023 Adv. Mater. 35 2309099
Google Scholar
[105] Choi H, Baek S, Jung H, Kang T, Lee S, Jeon J, Jang B C, Lee S 2025 Adv. Mater. 37 2406970
Google Scholar
[106] Dong J C, Zhang L N, Dai X Y, Ding F 2020 Nat. Commun. 11 5862
Google Scholar
[107] Cao G X, An F 2022 Mater. Today Commun. 33 104802
Google Scholar
[108] Zhang G Q, Chen Y, Yue S Y, Zhang Y W, Qin H S, Liu Y L 2023 J. Mech. Phy. Solids 181 105466
Google Scholar
[109] Liu R K, Lin S, Wan J, Li L, Zhang G Q, Qin H S, Liu Y L 2025 Thin-Walled Structures 213 113261
Google Scholar
[110] Tsang C I, Pu H H, Chen J H 2025 APL Mach. Learn. 3 016115
Google Scholar
[111] Hua Q L, Gao G Y, Jiang C S, Yu J R, Sun J L, Zhang T P, Gao B, Cheng W J, Liang R R, Qian H, Hu W G, Sun Q J, Wang Z L, Wu H Q 2020 Nat. Commun. 11 6207
Google Scholar
[112] Xiao X Y, Peng Z X, Zhang Z R, Zhou X Y, Liu X Z, Liu Y, Wang J J, Li H Y, Novoselov K S, Casiraghi C, Hu Z R 2024 Nat. Commun. 15 10491
Google Scholar
[113] Hu Z H, Krisnanda T, Fieramosca A, Zhao J X, Sun Q L, Chen Y Z, Liu H Y, Luo Y, Su R, Wang J Y, Watanabe K, Taniguchi T, Eda G, Wang X R, Ghosh S, Dini K, Sanvitto D, Liew T C H, Xiong Q H 2024 Nat. Commun. 15 1747
Google Scholar
[114] Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A, Kis A 2020 Nature 587 72
Google Scholar
[115] Lee M, Park C Y, Hwang D K, Kim M, Lee Y T 2022 Npj 2D Mater. Appl 6 45
Google Scholar
[116] Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101
Google Scholar
[117] Liu C J, Wan Y, Li L J, Lin C P, Hou T H, Huang Z Y, Hu V P H 2022 Adv. Mater. 34 2107894
Google Scholar
[118] Xiao K, Wan J, Xie H, Zhu Y X, Tian T, Zhang W, Chen Y X, Zhang J S, Zhou L H, Dai S, Xu Z H, Bao W Z, Zhou P 2024 Nat. Commun. 15 9782
Google Scholar
[119] Huang X J, Leng T, Chang K H, Chen J C, Novoselov K S, Hu Z R 2016 2D Mater. 3 025021
Google Scholar
[120] Sarker S, Kumar A, Ehteshamuddin M, Dasgupta A 2023 IEEE J. Electron Devices Soc. 11 510
Google Scholar
[121] Liu X F, Xing K J, Tang C S, Sun S, Chen P, Qi D C, Breese M B H, Fuhrer M S, Wee A T S, Yin X M 2025 Prog. Mater. Sci. 148 101390
Google Scholar
[122] Jiang T F, Ryu S K, Zhao Q, Im J, Huang R, Ho P S 2013 Microelectron. Reliab. 53 53
Google Scholar
[123] Lu T, Serafy C, Yang Z, Samal S K, Lim S K, Srivastava A 2017 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36 1593
Google Scholar
[124] Sun Y J, Zhang R J, Teng C J, Tan J Y, Zhang Z H, Li S N, Wang J W, Zhao S L, Chen W J, Liu B L, Cheng H M 2023 Mater. Today 66 9
Google Scholar
[125] Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501
Google Scholar
[126] Lu D L, Chen Y, Lu Z Y, Ma L K, Tao Q Y, Li Z W, Kong L G, Liu L T, Yang X K, Ding S M, Liu X, Li Y X, Wu R X, Wang Y L, Hu Y Y, Duan X D, Liao L, Liu Y 2024 Nature 630 340
Google Scholar
[127] Pendurthi R, Sakib N U, Sadaf M U K, Zhang Z, Sun Y, Chen C, Jayachandran D, Oberoi A, Ghosh S, Kumari S, Stepanoff S P, Somvanshi D, Yang Y, Redwing J M, Wolfe D E, Das S 2024 Nat. Nanotechnol. 19 970
Google Scholar
[128] Zhang Q, Li M H, Li L, Geng D C, Chen W, Hu W P 2024 Chem. Soc. Rev. 53 3096
Google Scholar
[129] Kim S J, Lee H J, Lee C H, Jang H W 2024 npj 2D Mater. Appl. 8 70
Google Scholar
[130] Yang S L, Liu C S, Yu S H, Jiang P, Hao H, Zhang L, Liu Y S, Zheng X H 2025 Chin. Phys. Lett. 42 090705
Google Scholar
[131] 王慧, 徐萌, 郑仁奎, 2020 69 017301
Google Scholar
Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301
Google Scholar
[132] Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952
Google Scholar
[133] Pendurthi R, Sakib N U, Sadaf M U K, Zhang Z Y, Sun Y W, Chen C, Jayachandran D, Oberoi A, Ghosh S, Kumari S, Stepanoff S P, Somvanshi D, Yang Y, Redwing J M, Wolfe D E, Das S 2024 Nat. Nanotechnol. 19 970
Google Scholar
[134] Schranghamer T F, Sharma M, Singh R, Das S 2021 Chem. Soc. Rev. 50 11032
Google Scholar
[135] Li S F, Pam M E, Li Y S, Chen L, Chien Y C, Fong X Y, Chi D Z, Ang K W 2021 Adv. Mater. 34 2103376
[136] Lu D L, Chen Y, Lu Z Y, Ma L K, Tao Q Y, Li Z W, Kong L G, Liu L T, Yang X K, Ding S M, Liu X, Li Y X, Wu R X, Wang Y L, Hu Y Y, Duan X D, Liao L, Liu Y 2024 Nature 630 340
Google Scholar
[137] Kim K S, Seo S, Kwon J, Lee D, Kim C, Ryu J E, Kim J, Suh J M, Jung H G, Jo Y, Shin J C, Song M K, Feng J, Ahn H, Lee S, Cho K, Jeon J, Seol M, Park J H, Kim S W, Kim J 2024 Nature 636 615
Google Scholar
[138] Hu Z Y, Li H T, Zhang M D, Jin Z M, Li J X, Fu W K, Dai Y Y, Huang Y, Liu X, Wang Y L 2025 Nano Res. 18 94907225
Google Scholar
[139] Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Perez R, Burwell G, Nikitskiy I, Lasanta T, Galan T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photon. 11 366
Google Scholar
[140] Tong L, Wan J, Xiao K, Liu J, Ma J Y, Guo X J, Zhou L H, Chen X Y, Xia Y, Dai S, Xu Z H, Bao W Z, Zhou P 2023 Nat. Electron. 6 37
[141] Zhu K C, Pazos S, Aguirre F, Shen Y Q, Yuan Y, Zheng W W, Alharbi O, Villena M A, Fang B, Li X Y, Milozzi A, Farronato M, Munoz-Rojo M, Wang T, Li R, Fariborzi H, Roldan J B, Benstetter G, Zhang X X, Alshareef H N, Grasser T, Wu H Q, Ielmini D, Lanza M 2023 Nature 618 57
Google Scholar
[142] Zhu J D, Park J H, Vitale S A, Ge W J, Jung G S, Wang J T, Mohamed M, Zhang T Y, Ashok M, Xue M T, Zheng X D, Wang Z E, Hansryd J, Chandrakasan A P, Kong J, Palacios T 2023 Nat. Nanotechnol. 18 456
Google Scholar
[143] Katiyar A K, Choi J, Ahn J H 2025 Nano Converg. 12 11
Google Scholar
[144] Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866
Google Scholar
[145] Guo Y M, Li J X, Zhan X P, Wang C W, Li M, Zhang B, Wang Z R, Liu Y Y, Yang K N, Wang H, Li W Y, Gu P F, Luo Z P, Liu Y J, Liu P T, Chen B, Watanabe K, Taniguchi T, Chen X Q, Qin C B, Chen J Z, Sun D M, Zhang J, Wang R S, Liu J P, Ye Y, Li X Y, Hou Y L, Zhou W, Wang H W, Han Z 2024 Nature 630 346
Google Scholar
[146] Tang H N, Wang Y T, Ni X Q, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fan S H, Mazur E, Yacoby A, Cao Y 2024 Nature 632 1038
Google Scholar
[147] Sharma S, Faizee M, De Sarkar A 2025 Nanotechnology 36 242001
Google Scholar
[148] Miao S J, Liu T L, Du Y J, Zhou X Y, Gao J N, Xie Y C, Shen F Y, Liu Y H, Cho Y 2022 Nanomaterials 12 2100
Google Scholar
[149] Wachter S, Polyushkin D K, Bethge O, Mueller T 2017 Nat. Commun. 8 14948
Google Scholar
[150] Chen X Y, Xie Y F, Sheng Y C, Tang H W, Wang Z M, Wang Y, Wang Y, Liao F Y, Ma J Y, Guo X J, Tong L, Liu H Q, Liu H, Wu T X, Cao J X, Bu S T, Shen H, Bai F Y, Huang D M, Deng J N, Riaud A, Xu Z H, Wu C J, Xing S W, Lu Y, Ma S L, Sun Z Z, Xue Z Y, Di Z F, Gong X, Zhang D W, Zhou P, Wan J, Bao W Z 2021 Nat. Commun. 12 5953
Google Scholar
[151] Ao M R, Zhou X C, Kong X J, Gou S F, Chen S F, Dong X Q, Zhu Y X, Sun Q C, Zhang Z J, Zhang J S, Zhang Q R, Hu Y, Sheng C M, Wang K X, Wang S Y, Wan J, Han J, Bao W Z, Zhou P 2025 Nature 640 654
Google Scholar
[152] Zhang W H, Ma S C, Ji X L, Liu X, Cong Y Q, Shi L P 2024 Nat. Electron. 7 954
Google Scholar
[153] Yang Z Y, Zhang Z, Huo S D, Meng F Y, Wang Y, Ma Y X, Liu B Y, Meng F Y, Xie Y, Wu E X 2025 SmartMat 6 e70005
Google Scholar
[154] Zhai Y B, Xie P, Hu J H, Chen X, Feng Z H, Lv Z Y, Ding G L, Zhou K, Zhou Y, Han S T 2023 Appl. Phys. Rev. 10 11408
Google Scholar
[155] Zhu K C, Pazos S, Aguirre F, Shen Y Q, Yuan Y, Zheng W W, Alharbi O, Villena M A, Fang B, Li X Y, Milozzi A, Farronato M, Muñoz-Rojo M, Wang T, Li R, Fariborzi H, Roldan J B, Benstetter G, Zhang X X, Alshareef H N, Grasser T, Wu H Q, Ielmini D, Lanza M 2023 Nature 618 57
Google Scholar
[156] Jain S, Li S F, Zheng H F, Li L Q, Fong X Y, Ang K W 2025 Nat. Commun. 16 2719
Google Scholar
[157] Kang J, Shin H, Kim K S, Song M, Lee D, Meng Y, Choi C, Suh J M, Kim B J, Kim H, Hoang A T, Park B, Zhou G Y, Sundaram S, Vuong P, Shin J, Choe J, Xu Z, Younas R, Kim J S, Han S, Lee S, Kim S O, Kang B, Seo S, Ahn H, Seo S, Reidy K, Park E, Mun S, Park M, Lee S, Kim H, Kum H S, Lin P, Hinkle C, Ougazzaden A, Ahn J, Kim J, Bae S 2023 Nat. Mater. 22 1470
Google Scholar
[158] Jin T Y, Gao J, Wang Y N, Chen W 2022 Sci. China Mater. 65 2154
Google Scholar
[159] Shinde S M, Das T, Hoang A T, Sharma B K, Chen X, Ahn J H 2018 Adv. Funct. Mater. 28 1706231
[160] Tang J, Wang Q Q, Tian J P, Li X Z, Li N, Peng Y L, Li X Z, Zhao Y C, He C L, Wu S Y, Li J W, Guo Y T, Huang B Y, Chu Y B, Ji Y R, Shang D S, Du L J, Yang R, Yang W, Bai X D, Shi D X, Zhang G Y 2023 Nat. Commun. 14 3633
Google Scholar
[161] Peng Y L, Cui C Y, Li L, Wang Y C, Wang Q Q, Tian J P, Huang Z H, Huang B Y, Zhang Y K, Li X Z, Tang J, Chu Y B, Yang W, Shi D X, Du L J, Li N, Zhang G Y 2024 Nat. Commun. 15 10833
Google Scholar
[162] Chen J L, Wang W G, Yan X D 2025 npj Unconve. Comput. 2 19
Google Scholar
[163] Steeneken P G, Soikkeli M, Arpiainen S, Rantala A, Jaaniso R, Pezone R, Vollebregt S, Lukas S, Kataria S, Houmes M J A, Álvarez-Diduk R, Lee K, Suryo Wasisto H, Anzinger S, Fueldner M, Verbiest G J, Alijani F, Hoon Shin D, Malic E, van Rijn R, Nevanen T K, Centeno A, Zurutuza A, van der Zant H S J, Merkoçi A, Duesberg G S, Lemme M C 2025 2D Mater. 12 023002
Google Scholar
[164] Meng Y, Feng J G, Han S, Xu Z H, Mao W B, Zhang T, Kim J S, Roh I, Zhao Y P, Kim D, Yang Y, Lee J, Yang L, Qiu C, Bae S 2023 Nat. Rev. Mater. 8 498
Google Scholar
[165] Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photonics 11 366
Google Scholar
[166] Zhang D H, Xu Z, Huang Z Y, Gutierrez A R, Blocker C J, Liu C H, Lien M, Cheng G, Liu Z, Chun I Y, Fessler J A, Zhong Z H, Norris T B 2021 Nat. Commun. 12 2413
Google Scholar
[167] Chen M L, Ma Y C, Aslam N, Liu C, Chen Y Q, Luo L Q, Zhang X W, Mai K R, Xiao H, Zhu K C, Alharbi O, Zheng D X, Xu X M, Liao H G, Yang Y M, Wang H, Zhou Z C, Wang H W, Tian B, Li J Z, He X, Chang K, Wan Y T, Shamim A, Alshareef H N, Lanza M, Anthopoulos T D, Han Z, Xue F, Zhang X X 2025 Nat. Nanotechnol. 20 1633
Google Scholar
[168] Dang B J, Zhang T, Wu X L, Liu K Q, Huang R, Yang Y C 2024 Nat. Electron. 7 991
Google Scholar
[169] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62
Google Scholar
[170] Huang P Y, Jiang B Y, Chen H J, Xu J Y, Wang K, Zhu C Y, Hu X Y, Li D, Zhen L, Zhou F C, Qin J K, Xu C Y 2023 Nat. Commun. 14 6736
Google Scholar
[171] Ma S L, Wu T X, Chen X Y, Wang Y, Ma J Y, Chen H L, Riaud A, Wan J, Xu Z H, Chen L, Ren J Y, Zhang D W, Zhou P, Chai Y, Bao W Z 2022 Sci. Adv. 8 9328
Google Scholar
[172] Zhao G Y, Wei Z, Wang W W, Feng D H, Xu A X, Liu W L, Song Z T 2020 Nanotechnol. Rev. 9 182
Google Scholar
[173] Akbulut M, Scholar E A 2018 IEEE Nanotechnol. Mag. 12 19
[174] Song H F, Liu J M, Liu B, Wu J Q, Cheng H M, Kang F Y 2018 Joule 2 442
Google Scholar
[175] Wu F, Tian H, Shen Y, Zhu Z Q, Liu Y M, Hirtz T, Wu R, Gou G Y, Qiao Y C, Yang Y, Xing C Y, Zhang G, Ren T L 2022 Adv. Mater. Interfaces 9 2200409
Google Scholar
[176] Woon W Y, Kasperovich A, Wen J R, Hu K K, Malakoutian M, Jhang J H, Vaziri S, Datye I, Shih C C, Hsu J F, Bao X Y, Wu Y, Nomura M, Chowdhury S, Liao S S 2025 Nat. Rev. Electr. Eng. 2 598
Google Scholar
[177] Kumari M, Singh N K, Sahoo M, Rahaman H 2022 Silicon 14 4473
Google Scholar
[178] Rizzi L, Zienert A, Schuster J, Köhne M, Schulz S E 2019 Comp. Mater. Sci. 161 364
Google Scholar
[179] Guo C H, Xu J Q, Ping Y 2021 J. Phys. Condens. Matter. 33 234001
Google Scholar
[180] Yu W, Cheng S C, Li Z Y, Liu L, Zhang Z F, Zhao Y P, Guo Y Z, Liu S 2024 Fundament. Res. 4 1442
Google Scholar
[181] Chen S X, Zhang H Y, Ling Z C, Zhai J W, Yu B 2025 ASPDAC ’25: 30th Asia and South Pacific Design Automation Conference Tokyo, Japan, January 20–23, 2025 p285
[182] Das Sharma D, Pasdast G, Tiagaraj S, Aygün K 2024 Nat. Electron. 7 244
Google Scholar
[183] Gupta S, Zhang J J, Lei J C, Yu H, Liu M J, Zou X L, Yakobson B I 2025 Chem. Rev. 125 786
Google Scholar
[184] Li X F, Wu Z H, Rzepa G, Karner M, Xu H Q, Wu Z C, Wang W, Yang G H, Luo Q, Wang L F, Li L 2025 Fundament. Res. 5 2149
Google Scholar
[185] Wang S X, Yu S X, Chen W T, Wang Y, Bi A T, An Z Y, Diao Y, Li W, Wang Y C 2025 Appl. Therm. Eng. 279 127699
Google Scholar
[186] Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778
Google Scholar
计量
- 文章访问数: 474
- PDF下载量: 25
- 被引次数: 0








下载: