搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维材料的集成与应用

杨高琛 马辰龙 徐浪浪 史文昊 黄鑫宇 孙铭君 毕铭 何啸 孟潇涵 吕晟杰 林维佳 贺敏 童磊 叶镭

引用本文:
Citation:

基于二维材料的集成与应用

杨高琛, 马辰龙, 徐浪浪, 史文昊, 黄鑫宇, 孙铭君, 毕铭, 何啸, 孟潇涵, 吕晟杰, 林维佳, 贺敏, 童磊, 叶镭

Integration and applications of two-dimensional materials

YANG Gaochen, MA Chenlong, XU Langlang, SHI Wenhao, HUANG Xinyu, SUN Mingjun, BI Ming, HE Xiao, MENG Xiaohan, LYU Shengjie, LIN Weijia, HE Min, TONG Lei, YE Lei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 在后摩尔时代, 随着器件物理尺寸的缩放极限和冯·诺依曼架构的局限性逐渐显现, 传统硅基集成电路领域面临严峻挑战. 然而, 二维层状材料凭借无悬挂键、高载流子迁移率、高光生载流子浓度等独特的物理特性, 有望突破这些瓶颈. 目前, 许多二维材料已经实现了规模化生长与应用, 在高性能单一功能器件、多功能融合器件、逻辑电路和集成芯片制造与应用当中展现出巨大的潜力. 本文综述了二维材料的基本特性、构成的基础功能器件、功能电路模块以及三维集成等方面的研究进展, 重点探讨了二维材料在规模化集成方案方面的挑战和解决路径, 并为未来的发展方向提出了展望.
    As Moore's Law encounters limitations in scaling device physical dimensions and reducing computational power consumption, traditional silicon-based integrated circuit (IC) technologies, which have enjoyed half a century of success, are facing unprecedented challenges. These limitations are especially apparent in emerging fields such as artificial intelligence, big data processing, and high-performance computing, where the demand for computational power and energy efficiency is growing. Therefore, the exploration of novel materials and hardware architectures is crucial to address these challenges. Two-dimensional (2D) materials have become ideal candidates for the next-generation electronic devices and integrated circuits (ICs) due to their unique physical properties such as the absence of dangling bonds, high carrier mobility, tunable band gaps, and high photonic responses. Notably, 2D materials such as graphene, transition metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN) have demonstrated immense potential in electronics, optoelectronics, and flexible sensing applications.This paper comprehensively reviews the recent advancements in the application of 2D materials in integrated circuits, analyzing the challenges and solutions related to large-scale integration, device design, functional circuit modules, and three-dimensional integration. Through a detailed examination of the basic properties of 2D materials, their constituent functional devices, and multifunctional integrated circuits, this paper presents a series of innovative ideas and methods, demonstrating the promising application prospects of 2D materials in future ICs.The research method involves a detailed analysis of the physical properties of common 2D materials such as graphene, TMDs, and h-BN, with typical application cases explored. This paper discusse how to utilize the excellent properties of these materials to fabricate high-performance single-function devices, integrated circuit modules, and 3D integrated chips, especially focusing on solving the challenges related to large-scale growth, device integration, and interface engineering of 2D materials. The comparison of the performance and applications between various materials demonstrates the unique advantages of 2D materials in the semiconductor industry and their potential in IC design.Although 2D materials perform well in laboratory environments, there are still significant challenges in practical applications, especially in large-scale production, device integration, and three-dimensional integration. Achieving high-quality, large-area growth of 2D materials, reducing interface defects, and improving device stability and reliability are still core issues that need to be addressed in research and industry. However, with the continuous advancements in 2D material fabrication technology and optimization of integration processes, these challenges are gradually being overcome, and the application prospects of 2D materials are expanding.
  • 图 1  (a) 石墨烯的三维结构图[28]; (b) 石墨烯的六角蜂窝状晶格, 每个晶胞含有A, B两个原子; (c) 石墨烯的三维能带结构[23]

    Fig. 1.  (a) 3D structure of graphene[28]; (b) hexagonal honeycomb lattice of graphene with two atoms (A and B) per unit cell; (c) 3D band structure of graphene[23].

    图 2  (a) MoS2的三维结构图[36]; (b) 2H, 1T和1T'相单层TMDs的原子结构, 图中指出了晶格矢量与原子平面的堆叠方式[29]; (c) 计算得到的厚度递减的2H-MoS2样品的能带结构的演化[29]

    Fig. 2.  (a) 3D structure of molybdenum disulphide[36]; (b) atomic structure of single layers of TMDs in their trigonal prismatic (2H), distorted octahedral (1T) and dimerized (1T') phases, lattice vectors and the stacking of atomic planes are indicated[29]; (c) evolution of the band structure of 2H‑MoS2 calculated from samples of decreasing thickness[29].

    图 3  逻辑器件的结构示意图与电学特性 (a) MoS2 n型晶体管[52]; (b) WSe2 p型晶体管[56]; (c) ReSe2双极性晶体管[59]; (d) WSe2同质结晶体管[60]

    Fig. 3.  Schematic diagram and electrical characteristics of logic devices: (a) MoS2 n-type transistor[52]; (b) WSe2 p-type transistor[56]; (c) ReSe2 bipolar transistor[59]; (d) WSe2 Homojunction transistor[60].

    图 4  存储器件的结构示意图与电学特性 (a) InSe/hBN/MLG浮栅型闪存[69]; (b) WSe2/Al2O3/HfO2/Al2O3电荷俘获型闪存[71]; (c) InSe/h-BN/CIPS铁电存储器[73]; (d) 3R-MoS2滑移铁电存储器[74]; (e) MoTe2相变型忆阻器[76]; (f) Ag/h-BN/Au导电细丝型忆阻器[77]

    Fig. 4.  Schematic diagram and electrical characteristics of memory devices: (a) InSe/hBN/MLG floating gate flash memory[69]; (b) WSe2/Al2O3/HfO2/Al2O3 charge trapping flash memory[71]; (c) InSe/h-BN/CIPS ferroelectric memory[73]; (d) 3R-MoS2 sliding ferroelectric memory[74]; (e) MoTe2 phase change memristor[76]; (f) Ag/h-BN/Au conductive filaments memristor[77].

    图 5  传感器的结构示意图与电学特性 (a) MoS2光电探测器[84]; (b) n-MoS2/p-GaSe嗅觉传感器[88]; (c) MoS2压力传感器[91]; (d) MoS2温度传感器[92]

    Fig. 5.  Structure and electrical characteristics of the sensors: (a) MoS2 photodetector[84]; (b) n-MoS2/p-GaSe olfactory sensor[88]; (c) MoS2 pressure sensor[91]; (d) MoS2 temperature sensor[92].

    图 6  多功能融合器件的构示意图与电学特性 (a) WSe2/LNO铁电晶体管[95]; (b) Bi2O2Se/h-BN/Gr光电浮栅晶体管[96]; (c) NbOI2双模态突触晶体管[97]

    Fig. 6.  Schematic diagram and electrical characteristics of multifunctional hybrid devices: (a) WSe2/LNO ferroelectric transistor[95]; (b) Bi2O2Se/h-BN/graphene photonic floating-gate transistor[96]; (c) NbOI2 bimodal synaptic transistor[97].

    图 7  神经形态器件突触和神经元的结构示意图与电学特性 (a) WS2忆阻器突触[101]; (b) MoS2浮栅突触[102]; (c) HZO/SnS2铁电突触[103]; (d) MoS2/h-BN/Gra神经元[104]; (e) WSe2冲击电离晶体管神经元[105]

    Fig. 7.  Schematic diagram of synapse and neuron structures in neuromorphic devices and their electrical characteristics: (a) WS2 memristor synapse[101]; (b) MoS2 floating-gate synapse[102]; (c) HZO/SnS2 ferroelectric synapse[103]; (d) MoS2/h-BN/graphene neuron[104]; (e) WSe2 impact ionization transistor neuron[105].

    图 8  (a) 内存逻辑单元阵列的制造的12 mm×12 mm芯片的照片[114]; (b) 基于 MOCVD生长的单层MoS2的浮栅存储器件的三维视图[115]; (c) NAND FET[115]; (d) OR-FET [115]; (e) OR-FET[115]

    Fig. 8.  (a) Photograph of a fabricated 12 mm×12 mm die with logic-in-memory cell arrays [114]; (b) 3D view of a floating gate memory device based on monolayer MoS2 grown by MOCVD[115]; (c) NAND FET[115]; (d) OR-FET[115]; (e) OR-FET [115].

    图 9  (a) 8 位DAC和ADC简化电路结构图[116]; (b) MoS2 FET阵列[116]; (c) 数据转换过程, 包括数字信号输入 Vin1Vin8[116]

    Fig. 9.  (a) 8-bit DAC and ADC [116]; (b) cascaded MoS2 FET arrays[116]; (c) entire data conversion process, including digital signal input Vin1Vin8[116].

    图 10  (a) SRAM电路图[117]; (b) SRAM器件图[117]; (c) 异构2T-eDRAM的示意图[118]; (d) 相应的等效电路图[118]; (e) Si-MoS2 异构垂直2T-eDRAM的示意图[118]; (f) 2T-eDRAM的SEM图像[118]

    Fig. 10.  (a) SRAM circuit diagram[117]; (b) SRAM device diagram[117]; (c) schematic diagram of the heterogeneous 2T-eDRAM[118]; (d) corresponding equivalent circuit diagram[118]; (e) schematic diagram of the Si-MoS2 heterogeneous vertical 2T-eDRAM[118]; (f) SEM image of the 2T-eDRAM[118].

    图 11  (a) 运算放大器的实验装置[95]; (b) 运算放大器相应的等效电路图[95]; (c) 运算放大器的光学图像[119]; (d) 原始长度为50 mm的未弯曲CPW TL[119]; (e) 弯曲的CPW TL, 端口到端口的距离为40 mm[119]; (f) 弯曲的CPW TL, 端口到端口的距离为30 mm[119]; (g) 弯曲的CPW TL, 端口到端口的距离为20 mm[119]

    Fig. 11.  (a) Experimental setup of the operational amplifier[95]; (b) corresponding equivalent circuit diagram of the operational amplifier[95]; (c) optical image of the operational amplifier[119]; (d) unbent CPW TL with an original length of 50 mm[119]; (e) bent CPW TL with a port-to-port distance of 40 mm[119]; (f) bent CPW TL with a port-to-port distance of 30 mm[119]; (g) bent CPW TL with a port-to-port distance of 20 mm[119].

    图 12  (a) 多聚物辅助的转移方法[129]; (b) 由MoS2 FETs与VRRAMs单片3D集成的1T-4R结构[132]; (c) 单片3D集成的CMOS与非门示意图[133]; (d) 通过范德瓦耳斯层压制作的10层单片3D集成系统[136]

    Fig. 12.  (a) Polymer-assisted transfer[129]; (b) monolithic 3D integration of MoS2 transistors and VRRAMs into a 1T-4R structure[132]; (c) schematic of a monolithic 3D-integrated CMOS NAND circuit[133]; (d) schematic of a 10-tier monolithic 3D system integrated by van der Waals lamination[136].

    图 13  (a) 单晶TMD阵列的低温生长示意图, 突出展示了在图案化结构的边缘或角落成核的趋势[137]; (b) 无缝单片3D集成示意图[137]

    Fig. 13.  (a) Schematic showing low-temperature growth of single-crystalline TMD array, highlighting the tendency of nuclei to form at edges or corners of the patterned structure[137]; (b) schematic of seamless monolithic 3D integration[137].

    图 14  (a) 用于光电器件的二维材料与硅基CMOS电路的3D集成[139]; (b) SOI-MoS2异质3D堆叠CFET示意图[140]; (c) 二维材料-硅基电路异质3D集成流程图[140]; (d) 由14层vdW异质结构垂直堆叠搭建的3D与非逻辑门[145]

    Fig. 14.  (a) 3D integration of 2D materials with silicon logic for optoelectronics[139]; (b) schematic of the SOI-MoS2 heterogeneous 3D-stacked CFET[140]; (c) schematic of the 2D-silicon heterogeneous 3D integration process[140]; (d) 3D NAND logic made of vertically stacked 14-layer vdW heterostructure[145].

    图 15  二维材料的集成应用 (a) 基于二维材料的逻辑芯片[151]; (b) 基于二维材料的边缘AI芯片[157]; (c) 基于二维材料的柔性电子[161]; (d) 基于二维材料的感算一体[169]; (e) 基于二维材料的光电芯片[171]

    Fig. 15.  Integrated applications of two-dimensional materials: (a) Logic chips based on two-dimensional materials[151]; (b) edge AI chips based on two-dimensional materials[157]; (c) flexible electronics based on two-dimensional materials[161]; (d) sensing-computing integration based on two-dimensional materials[169]; (e) optoelectronic chips based on two-dimensional materials[171].

    表 1  二维材料电学性质对比

    Table 1.  Comparison of the electronic properties of 2D materials.

    材料类型材料名称带隙/eV迁移率
    /cm2·(V·s)–1
    开关比文献
    单元素
    二维材料
    石墨烯02×104100[24]
    黑磷0.3—2~103106[39]
    0.31—0.921485~104[40]
    硅烯1.1329~106[41]
    TMDsMoS21.8217>106[30]
    WSe21.2—1.6~250108[32]
    HfS2~1.457.6>108[42]
    III-VI族
    化合物
    GaTe1.70.2[43]
    InSe~1.26103—104108[44]
    二维
    氮化物
    GaN~5.0160~106[45]
    h-BN5.95—6.1[37]
    二维金属
    氧化物
    MoO33.31. 1×103<103[46]
    二维有机
    化合物
    Ni3(HITP)245.42.29×103[47]
    下载: 导出CSV

    表 2  二维材料与传统硅基材料晶体管性能对比

    Table 2.  Comparison of performance between two-dimensional materials and traditional silicon-based materials in transistors.

    材料类型 材料名称 器件沟道尺寸/nm 跨导/(μS·μm–1) 亚阈值摆幅/(mV·dec–1) 开关比 静态功耗/W 文献
    Si基 MOS 45 ~0. 1 / <105 < 10–9 [61]
    GAA-Si 4560 15 63 1010 < 10–11 [62]
    Fin-Si 14+24×2 433.87 67.02 107 < 10–13 [63]
    TMDs 2L-MoS2 400 ~10 65 106 < 10–13 [64]
    1L-MoS2 ~10 76 108 < 10–15 [52]
    2L-WSe2 120 80 200 108 < 10–10 [65]
    ML-WSe2 1500 875 107 < 10–13 [66]
    Ⅲ—Ⅵ族化合物 InSe 10 6000 75 107 < 10–15 [67]
    下载: 导出CSV

    表 3  二维材料与传统硅基材料非易失器件性能对比

    Table 3.  Comparison of performance between two-dimensional materials and traditional silicon-based materials in non-volatile devices.

    材料类型材料名称存储状态数目编程
    速度/ns
    编程
    周期/
    保留
    时间/
    s
    开关比文献
    Si基HfO2/Al2O3≥2>1000>103108>103[78]
    SiO2/nc-Si/
    SiNx
    ≥2>10×105>105>1055×104[79]
    TMDsMoS2≥30>103>2×102>105[80]
    FGTWSe2≥41068×106108>103[81]
    InSe≥421>2×103108109[69]
    FE FETCuInP2S6≥4>103>104>104[73]
    3R-MoS2≥9>104108>106[74]
    MRAMh-BN≥4>104104[77]
    下载: 导出CSV

    表 4  二维材料的集成应用总结

    Table 4.  Summary of integrated applications of two-dimensional materials.

    材料 集成方法 器件数量 单元器件平均面积/μm2 应用领域 参考文献
    MoS2 生长 115 5217 逻辑 [149]
    MoS2 生长 156 逻辑 [150]
    MoS2 生长 5900 1525 逻辑 [151]
    h-BN 2D+CMOS 0.053(功能区) 边缘AI [155]
    HfSe2 转移 1024 1503 边缘AI [156]
    WSe2/h-BN/ MoS2 转移 250000 边缘AI [157]
    MoS2 转移 柔性电子 [159]
    MoS2 转移 30000 柔性电子 [160]
    MoS2 转移 100+ 15600 柔性电子 [161]
    石墨烯 2D+CMOS 101124 3(功能区) 光电芯片 [165]
    石墨烯 2D+CMOS 16 111111 光电芯片 [166]
    h-BN 2D+CMOS 3.14(功能区) 光电芯片 [167]
    WSe2 2D+CMOS 9 115.5 感算一体 [169]
    HbS2/MoS2 2D+CMOS 100 7412 感算一体 [170]
    MoS2 生长 619 11.650 感算一体 [171]
    下载: 导出CSV
    Baidu
  • [1]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [2]

    Kim K S, Kwon J, Ryu H, Kim C, Kim H, Lee E K, Lee D, Seo S, Han N M, Suh J M, Kim J, Song M K, Lee S, Seol M, Kim J 2024 Nat. Nanotechnol. 19 895Google Scholar

    [3]

    Thompson N C, Spanuth S 2021 Commun. ACM 64 64

    [4]

    Kudithipudi D, Schuman C, Vineyard C M, Pandit T, Merkel C, Kubendran R, Aimone J B, Orchard G, Mayr C, Benosman R, Hays J, Young C, Bartolozzi C, Majumdar A, Cardwell S G, Payvand M, Buckley S, Kulkarni S, Gonzalez H A, Cauwenberghs G, Thakur C S, Subramoney A, Furber S 2025 Nature 637 801Google Scholar

    [5]

    Mehonic A, Kenyon A J 2022 Nature 604 255Google Scholar

    [6]

    Aslam Mohd, Raman A P S, Rana I, Singh M B, Ranjan K R, Verma C, AlFantazi A, Singh P, Kumari K 2025 Coordin. Chem. Rev. 543 216890Google Scholar

    [7]

    Aftab S, Hegazy H H 2023 Small 19 2205778Google Scholar

    [8]

    Naclerio A E, Kidambi P R 2023 Adv. Mater. 35 2207374Google Scholar

    [9]

    Qiu H, Yu Z H, Zhao T G, Zhang Q, Xu M S, Li P F, Li T T, Bao W Z, Chai Y, Chen S L, et al. 2024 Sci. China Inf. Sci. 67 160400Google Scholar

    [10]

    Wu Y W, Wu Y J, Li H M, Liu S 2025 Chip 100161

    [11]

    Zhang Q M, Zhao Z H, Tao L 2025 Mater. Today Phys. 53 101710Google Scholar

    [12]

    Xie P S, Li D J, Wang W J, Ho J C 2025 Small 2503717

    [13]

    Goel N, Kumar R 2025 Nano-Micro Lett. 17 197Google Scholar

    [14]

    Zhang L N, Dong J C, Ding F 2021 Chem. Rev. 121 6321Google Scholar

    [15]

    Knobloch T, Selberherr S, Grasser T 2022 Nanomaterials 12 3548Google Scholar

    [16]

    Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar

    [17]

    Zeng S F, Liu C S, Zhou P 2024 Nat. Rev. Electr. Eng. 1 335Google Scholar

    [18]

    Jiang J K, Parto K, Cao W, Banerjee K 2019 IEEE J. Electron Devices Soc. 7 878Google Scholar

    [19]

    Chiu M H, Zhang C, Shiu H W, Chuu C P, Chen C H, Chang C Y S, Chen C H, Chou M Y, Shih C K, Li L J 2015 Nat. Commun. 6 7666Google Scholar

    [20]

    Wang Y J, Liu E F, Liu H M, Pan Y M, Zhang L Q, Zeng J W, Fu Y J, Wang M, Xu K, Huang Z, Wang Z L, Lu H Z, Xing D Y, Wang B G, Wan X G, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [21]

    Jayachandran D, Sakib N U, Das S 2024 Nat. Rev. Electr. Eng. 1 300Google Scholar

    [22]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [23]

    Avouris P 2010 Nano Lett. 10 4285Google Scholar

    [24]

    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [25]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [26]

    Hwang E H, Sarma S D 2008 Phys. Rev. B 77 115449Google Scholar

    [27]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [28]

    Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545Google Scholar

    [29]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [30]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [31]

    Han G H, Duong D L, Keum D H, Yun S J, Lee Y H 2018 Chem. Rev. 118 6297Google Scholar

    [32]

    Dai C H, Liu Y Q, Wei D C 2022 Chem. Rev. 122 10319Google Scholar

    [33]

    Mak K F, Shan J 2016 Nat. Photon. 10 216Google Scholar

    [34]

    Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J, Hong S C 2011 Phys. Rev. B 84 045409Google Scholar

    [35]

    Jaikissoon M, Koroglu C, Yang J A, Neilson K, Saraswat K C, Pop E 2024 Nat. Electron. 7 885Google Scholar

    [36]

    Oviroh P O, Jen T C, Ren J W, Duin A V 2023 npj Clean Water 6 14Google Scholar

    [37]

    Roy S, Zhang X, Puthirath A B, Meiyazhagan A, Bhattacharyya S, Rahman M M, Babu G, Susarla S, Saju S K, Tran M K, Sassi L M, Saadi M A S R, Lai J W, Sahin O, Sajadi S M, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X T, Adumbumkulath A, Miller K A, Gayle J M, Ajnsztajn A, Prasankumar T, Harikrishnan V V J, Ojha V, Kannan H, Khater A Z, Zhu Z W, Iyengar S A, Autreto P A D S, Oliveira E F, Gao G H, Birdwell A G, Neupane M R, Ivanov T G, Taha-Tijerina J, Yadav R M, Arepalli S, Vajtai R, Ajayan P M 2021 Adv. Mater. 33 2101589Google Scholar

    [38]

    Chen Z W, Zhang J J, Wang S Z, Wong C P 2024 Fundament. Res. 4 1455Google Scholar

    [39]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2024 Nat. Nanotechnol. 9 372

    [40]

    Huang X C, Guan J Q, Lin Z J, Liu B, Xing S Y, Wang W H, Guo J D 2017 Nano Lett. 17 4619Google Scholar

    [41]

    Lee J, Kwon J, Seo D, Na J, Park S, Lee H J, Lee S W, Lee K Y, Park T E, Choi H J 2019 ACS Appl. Mater. Interfaces 11 42512Google Scholar

    [42]

    Fu L, Wang F, Wu B, Wu N, Huang W, Wang H L, Jin C H, Zhuang L, He J, Fu L, Liu Y Q 2017 Adv. Mater. 29 1700439Google Scholar

    [43]

    Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752Google Scholar

    [44]

    Yang H W, Hsieh H F, Chen R S, Ho C H, Lee K Y, Chao L C 2018 ACS Appl. Mater. Interfaces 10 5740Google Scholar

    [45]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [46]

    Balendhran S, Deng J K, Ou J Z, Walia S, Scott J, Tang J S, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2012 Adv. Mater. 25 109

    [47]

    Wang B F, Luo Y Y, Liu B, Duan G T 2019 ACS Appl. Mater. Interfaces 11 35935Google Scholar

    [48]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [49]

    Kong L G, Chen Y, Liu Y 2021 Nano Res. 14 1768Google Scholar

    [50]

    Xue F, Zhang C H, Ma Y C, Wen Y, He X, Yu B, Zhang X X 2022 Adv. Mater. 34 2201880Google Scholar

    [51]

    Zhang J, Liu L, Yang Y, Huang Q W, Li D L, Zeng D W 2021 Phys. Chem. 23 1542

    [52]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147Google Scholar

    [53]

    Chen R S, Ding G L, Zhou Y, Han S T 2021 J. Mater. Chem. C 9 11407Google Scholar

    [54]

    Tang L, Zou J Y 2023 Nano-Micro Lett. 15 230Google Scholar

    [55]

    Li X F, Wu Z H, Rzepa G, Karner M, Xu H Q, Wu Z C, Wang W, Yang G H, Luo Q, Wang L F, Li L 2025 Fundament. Res. 5 2149Google Scholar

    [56]

    Wang Y X, Qiu G, Wang R X, Huang S Y, Wang Q X, Liu Y Y, Du Y C, Goddard W A, Kim M J, Xu X F, Ye P D, Wu W Z 2018 Nat. Electron. 1 228Google Scholar

    [57]

    Lemme M C, Akinwande D, Huyghebaert C, Stampfer C 2022 Nat. Commun. 13 1392Google Scholar

    [58]

    Zhao Y H, Sun H R, Sheng Z, Zhang D W, Zhou P, Zhang Z X 2023 Chin. Phys. B 32 128505Google Scholar

    [59]

    Lee K C, Yang S H, Sung Y S, Chang Y M, Lin C Y, Yang F S, Li M J, Watanabe K, Taniguchi T, Ho C H, Lien C H, Lin Y F 2019 Adv. Funct. Materials 29 1809011Google Scholar

    [60]

    Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, Liu E F, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383Google Scholar

    [61]

    Sun Y L, Li M J, Ding Y T, Wang H P, Wang H, Chen Z M, Xie D 2022 InfoMat. 4 e12317Google Scholar

    [62]

    Liu Q, Mu Z, Liu C, Zhao L, Chen L, Yang Y, Wei X, Yu W 2021 IEEE Electron Device Lett. 42 657Google Scholar

    [63]

    Kaur G, Gill S S, Rattan M 2020 Int. J. Smart Sens. Int. 13 1

    [64]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [65]

    Shi X, Wang X, Liu S, Guo Q, Sun L, Li X, Huang R, Wu Y 2022 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1–5, 2022 p7.1. 1

    [66]

    Resta G V, Sutar S, Balaji Y, Lin D, Raghavan P, Radu I, Catthoor F, Thean A, Gaillardon P E, De Micheli G 2016 Sci. Rep. 6 29448Google Scholar

    [67]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [68]

    Yu X X, Xu L L, Shi W H, Meng X H, Huang X Y, Peng Z R, Tong L, Sun H J, Miao X S, Ye L 2025 Mater. Horiz. 12 8409Google Scholar

    [69]

    Wu L M, Wang A W, Shi J N, Yan J H, Zhou Z, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Huang Y, Zhou W, Bao L H, Ouyang M, Pennycook S J, Pantelides S T, Gao H J 2021 Nat. Nanotechnol. 16 882Google Scholar

    [70]

    Wu H, Shi J K, Ye Z L, Yan Z 2025 Appl. Phys. Lett. 127 043101Google Scholar

    [71]

    Fan Z W, Qu J Y, Wang T, Wen Y, An Z W, Jiang Q T, Xue W H, Zhou P, Xu X H 2023 Chin. Phys. B 32 128508Google Scholar

    [72]

    Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar

    [73]

    Singh P, Baek S, Yoo H H, Niu J, Park J H, Lee S 2022 ACS Nano 16 5418Google Scholar

    [74]

    Li X Z, Qin B, Wang Y X, Xi Y, Huang Z H, Zhao M Z, Peng Y L, Chen Z T, Pan Z T, Zhu J D, Cui C Y, Yang R, Yang W, Meng S, Shi D X, Bai X D, Liu C, Li N, Tang J S, Liu K H, Du L J, Zhang G Y 2024 Nat. Commun. 15 10921Google Scholar

    [75]

    Ehman M M, Samad Y A, Gul J Z, Saqib M, Khan M, Shaukat R A, Chang R, Shi Y, Kim W Y 2025 Prog. Mater. Sci. 152 101471Google Scholar

    [76]

    Zhang F, Zhang H, Shrestha P R, Zhu Y, Maize K, Krylyuk S, Shakouri A, Campbell J P, Cheung K P, Bendersky L A, Davydov A V, Appenzeller J 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA December 1–5, 2018 p22. 7. 1

    [77]

    Chen X, Yang D L, Hwang G, Dong Y J, Cui B B, Wang D C, Chen H G, Lin N, Zhang W Q, Li H H, Shao R W, Lin P, Hong H, Yao Y G, Sun L F, Wang Z R, Yang H 2024 ACS Nano 18 10758Google Scholar

    [78]

    Spassov D, Paskaleva A 2023 Nanomaterials 13 2456Google Scholar

    [79]

    Yu X Y, Ma Z Y, Shen Z X, Li W, Chen K J, Xu J, Xu L 2022 Nanomaterials 12 2459Google Scholar

    [80]

    Cao Y, Balijepalli A, Sinha S, Wang C C, Wang W P, Zhao W 2009 FNT Electron. Design Autom. 3 305Google Scholar

    [81]

    Huang X H, Liu C S, Tang Z W, Zeng S F, Wang S Y, Zhou P 2023 Nat. Nanotechnol. 18 486Google Scholar

    [82]

    Zhang D Z, Pan W J, Tang M C, Wang D Y, Yu S J, Mi Q, Pan Q N, Hu Y Q 2023 Nano Res. 16 11959Google Scholar

    [83]

    Lou Z, Liang Z Z, Shen G Z 2016 J. Semicond. 37 091001Google Scholar

    [84]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497Google Scholar

    [85]

    Yore A E, Smithe K K H, Jha S, Ray K, Pop E, Newaz A K M 2017 Appl. Phys. Lett. 111 043110Google Scholar

    [86]

    Shen S W, Wu W X, Yue X F, Qin S K, Sheng C X, Xia D C, Guo J Y, Chen J J, Han J K, Liu B J, Lu Y, Hu L G, Liu R, Qiu Z J, Cong C X 2025 Adv. Mater. Technol. 10 2500214Google Scholar

    [87]

    Hassan H U, Mun J, Kang B S, Song J Y, Kim T, Kang S W 2016 RSC Adv. 6 75839Google Scholar

    [88]

    Niu Y, Zeng J W, Liu X C, Li J L, Wang Q, Li H, Rooij N F D, Wang Y, Zhou G F 2021 Adv. Sci. 8 2100472Google Scholar

    [89]

    Venkatesan A, Ryu H, Devnath A, Yoo H, Lee S 2024 J. Mater. Sci. Technol. 168 79Google Scholar

    [90]

    Yang J, Luo S, Zhou X, Li J L, Fu J T, Yang W D, Wei D P 2019 ACS Appl. Mater. Interfaces 11 14997Google Scholar

    [91]

    Xu D D, Duan L, Yan S Y, Wang Y, Cao K, Wang W D, Xu H C, Wang Y J, Hu L W, Gao L B 2022 Micromachines 13 660Google Scholar

    [92]

    Daus A, Jaikissoon M, Khan A I, Kumar A, Grady R W, Saraswat K C, Pop E 2022 Nano Lett. 22 6135Google Scholar

    [93]

    Matthus C D, Chava P, Watanabe K, Taniguchi T, Mikolajick T, Helm M, Erbe A 2023 IEEE J. Electron Devices Soc. 11 359Google Scholar

    [94]

    Huang Z, Li Y, Zhang Y, Chen J, He J, Jiang J 2024 Int. J. Extrem. Manuf. 6 032003Google Scholar

    [95]

    Tong L, Peng Z R, Lin R F, Li Z, Wang Y L, Huang X Y, Xue K H, Xu H Y, Liu F, Xia H, Wang P, Xu M S, Xiong W, Hu W D, Xu J B, Zhang X L, Ye L, Miao X S 2021 Science 373 1353Google Scholar

    [96]

    Sun L, Xu Y S, Huo G H, Hou Y X, Li W, Zheng Y F, Shi J J, Jiang Y M, Su J, Zhuge F, Bando Y, Zhai T Y, Gao Y H, Wang Z L 2025 Nano Energy 143 111311Google Scholar

    [97]

    Wang M Q, Ouyang D C, Dai Y, Huo D, He W K, Song B L, Hu W H, Wu M H, Li Y, Zhai T Y 2025 Adv. Mater. 37 2500049Google Scholar

    [98]

    Hong Y W, Liu Y M, Li R N, Tian H 2024 J. Phys. Mater. 7 032001Google Scholar

    [99]

    Wang P F, Chen M Y, Xie Y Q, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J, Miao F 2023 Chin. Phys. Lett. 40 117201Google Scholar

    [100]

    贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰 2024 73 207302Google Scholar

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302Google Scholar

    [101]

    Yan X B, Zhao Q L, Chen A P, Zhao J H, Zhou Z Y, Wang J J, Wang H, Zhang L, Li X Y, Xiao Z A, Wang K Y, Qin C Y, Wang G, Pei Y F, Li H, Ren D L, Chen J S, Liu Q 2019 Small 15 1901423Google Scholar

    [102]

    Park E, Kim M, Kim T S, Kim I S, Park J, Kim J, Jeong Y, Lee S, Kim I, Park J K, Kim G T, Chang J, Kang K, Kwak J Y 2020 Nanoscale 12 24503Google Scholar

    [103]

    Song C, Kim D, Lee S, Kwon H 2024 Adv. Sci. 11 2308588Google Scholar

    [104]

    Wang H, Lu Y L, Liu S B, Yu J, Hu M, Li S N, Yang R, Watanabe K, Taniguchi T, Ma Y, Miao X S, Zhuge F, He Y H, Zhai T Y 2023 Adv. Mater. 35 2309099Google Scholar

    [105]

    Choi H, Baek S, Jung H, Kang T, Lee S, Jeon J, Jang B C, Lee S 2025 Adv. Mater. 37 2406970Google Scholar

    [106]

    Dong J C, Zhang L N, Dai X Y, Ding F 2020 Nat. Commun. 11 5862Google Scholar

    [107]

    Cao G X, An F 2022 Mater. Today Commun. 33 104802Google Scholar

    [108]

    Zhang G Q, Chen Y, Yue S Y, Zhang Y W, Qin H S, Liu Y L 2023 J. Mech. Phy. Solids 181 105466Google Scholar

    [109]

    Liu R K, Lin S, Wan J, Li L, Zhang G Q, Qin H S, Liu Y L 2025 Thin-Walled Structures 213 113261Google Scholar

    [110]

    Tsang C I, Pu H H, Chen J H 2025 APL Mach. Learn. 3 016115Google Scholar

    [111]

    Hua Q L, Gao G Y, Jiang C S, Yu J R, Sun J L, Zhang T P, Gao B, Cheng W J, Liang R R, Qian H, Hu W G, Sun Q J, Wang Z L, Wu H Q 2020 Nat. Commun. 11 6207Google Scholar

    [112]

    Xiao X Y, Peng Z X, Zhang Z R, Zhou X Y, Liu X Z, Liu Y, Wang J J, Li H Y, Novoselov K S, Casiraghi C, Hu Z R 2024 Nat. Commun. 15 10491Google Scholar

    [113]

    Hu Z H, Krisnanda T, Fieramosca A, Zhao J X, Sun Q L, Chen Y Z, Liu H Y, Luo Y, Su R, Wang J Y, Watanabe K, Taniguchi T, Eda G, Wang X R, Ghosh S, Dini K, Sanvitto D, Liew T C H, Xiong Q H 2024 Nat. Commun. 15 1747Google Scholar

    [114]

    Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A, Kis A 2020 Nature 587 72Google Scholar

    [115]

    Lee M, Park C Y, Hwang D K, Kim M, Lee Y T 2022 Npj 2D Mater. Appl 6 45Google Scholar

    [116]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101Google Scholar

    [117]

    Liu C J, Wan Y, Li L J, Lin C P, Hou T H, Huang Z Y, Hu V P H 2022 Adv. Mater. 34 2107894Google Scholar

    [118]

    Xiao K, Wan J, Xie H, Zhu Y X, Tian T, Zhang W, Chen Y X, Zhang J S, Zhou L H, Dai S, Xu Z H, Bao W Z, Zhou P 2024 Nat. Commun. 15 9782Google Scholar

    [119]

    Huang X J, Leng T, Chang K H, Chen J C, Novoselov K S, Hu Z R 2016 2D Mater. 3 025021Google Scholar

    [120]

    Sarker S, Kumar A, Ehteshamuddin M, Dasgupta A 2023 IEEE J. Electron Devices Soc. 11 510Google Scholar

    [121]

    Liu X F, Xing K J, Tang C S, Sun S, Chen P, Qi D C, Breese M B H, Fuhrer M S, Wee A T S, Yin X M 2025 Prog. Mater. Sci. 148 101390Google Scholar

    [122]

    Jiang T F, Ryu S K, Zhao Q, Im J, Huang R, Ho P S 2013 Microelectron. Reliab. 53 53Google Scholar

    [123]

    Lu T, Serafy C, Yang Z, Samal S K, Lim S K, Srivastava A 2017 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36 1593Google Scholar

    [124]

    Sun Y J, Zhang R J, Teng C J, Tan J Y, Zhang Z H, Li S N, Wang J W, Zhao S L, Chen W J, Liu B L, Cheng H M 2023 Mater. Today 66 9Google Scholar

    [125]

    Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501Google Scholar

    [126]

    Lu D L, Chen Y, Lu Z Y, Ma L K, Tao Q Y, Li Z W, Kong L G, Liu L T, Yang X K, Ding S M, Liu X, Li Y X, Wu R X, Wang Y L, Hu Y Y, Duan X D, Liao L, Liu Y 2024 Nature 630 340Google Scholar

    [127]

    Pendurthi R, Sakib N U, Sadaf M U K, Zhang Z, Sun Y, Chen C, Jayachandran D, Oberoi A, Ghosh S, Kumari S, Stepanoff S P, Somvanshi D, Yang Y, Redwing J M, Wolfe D E, Das S 2024 Nat. Nanotechnol. 19 970Google Scholar

    [128]

    Zhang Q, Li M H, Li L, Geng D C, Chen W, Hu W P 2024 Chem. Soc. Rev. 53 3096Google Scholar

    [129]

    Kim S J, Lee H J, Lee C H, Jang H W 2024 npj 2D Mater. Appl. 8 70Google Scholar

    [130]

    Yang S L, Liu C S, Yu S H, Jiang P, Hao H, Zhang L, Liu Y S, Zheng X H 2025 Chin. Phys. Lett. 42 090705Google Scholar

    [131]

    王慧, 徐萌, 郑仁奎, 2020 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [132]

    Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952Google Scholar

    [133]

    Pendurthi R, Sakib N U, Sadaf M U K, Zhang Z Y, Sun Y W, Chen C, Jayachandran D, Oberoi A, Ghosh S, Kumari S, Stepanoff S P, Somvanshi D, Yang Y, Redwing J M, Wolfe D E, Das S 2024 Nat. Nanotechnol. 19 970Google Scholar

    [134]

    Schranghamer T F, Sharma M, Singh R, Das S 2021 Chem. Soc. Rev. 50 11032Google Scholar

    [135]

    Li S F, Pam M E, Li Y S, Chen L, Chien Y C, Fong X Y, Chi D Z, Ang K W 2021 Adv. Mater. 34 2103376

    [136]

    Lu D L, Chen Y, Lu Z Y, Ma L K, Tao Q Y, Li Z W, Kong L G, Liu L T, Yang X K, Ding S M, Liu X, Li Y X, Wu R X, Wang Y L, Hu Y Y, Duan X D, Liao L, Liu Y 2024 Nature 630 340Google Scholar

    [137]

    Kim K S, Seo S, Kwon J, Lee D, Kim C, Ryu J E, Kim J, Suh J M, Jung H G, Jo Y, Shin J C, Song M K, Feng J, Ahn H, Lee S, Cho K, Jeon J, Seol M, Park J H, Kim S W, Kim J 2024 Nature 636 615Google Scholar

    [138]

    Hu Z Y, Li H T, Zhang M D, Jin Z M, Li J X, Fu W K, Dai Y Y, Huang Y, Liu X, Wang Y L 2025 Nano Res. 18 94907225Google Scholar

    [139]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Perez R, Burwell G, Nikitskiy I, Lasanta T, Galan T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photon. 11 366Google Scholar

    [140]

    Tong L, Wan J, Xiao K, Liu J, Ma J Y, Guo X J, Zhou L H, Chen X Y, Xia Y, Dai S, Xu Z H, Bao W Z, Zhou P 2023 Nat. Electron. 6 37

    [141]

    Zhu K C, Pazos S, Aguirre F, Shen Y Q, Yuan Y, Zheng W W, Alharbi O, Villena M A, Fang B, Li X Y, Milozzi A, Farronato M, Munoz-Rojo M, Wang T, Li R, Fariborzi H, Roldan J B, Benstetter G, Zhang X X, Alshareef H N, Grasser T, Wu H Q, Ielmini D, Lanza M 2023 Nature 618 57Google Scholar

    [142]

    Zhu J D, Park J H, Vitale S A, Ge W J, Jung G S, Wang J T, Mohamed M, Zhang T Y, Ashok M, Xue M T, Zheng X D, Wang Z E, Hansryd J, Chandrakasan A P, Kong J, Palacios T 2023 Nat. Nanotechnol. 18 456Google Scholar

    [143]

    Katiyar A K, Choi J, Ahn J H 2025 Nano Converg. 12 11Google Scholar

    [144]

    Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866Google Scholar

    [145]

    Guo Y M, Li J X, Zhan X P, Wang C W, Li M, Zhang B, Wang Z R, Liu Y Y, Yang K N, Wang H, Li W Y, Gu P F, Luo Z P, Liu Y J, Liu P T, Chen B, Watanabe K, Taniguchi T, Chen X Q, Qin C B, Chen J Z, Sun D M, Zhang J, Wang R S, Liu J P, Ye Y, Li X Y, Hou Y L, Zhou W, Wang H W, Han Z 2024 Nature 630 346Google Scholar

    [146]

    Tang H N, Wang Y T, Ni X Q, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fan S H, Mazur E, Yacoby A, Cao Y 2024 Nature 632 1038Google Scholar

    [147]

    Sharma S, Faizee M, De Sarkar A 2025 Nanotechnology 36 242001Google Scholar

    [148]

    Miao S J, Liu T L, Du Y J, Zhou X Y, Gao J N, Xie Y C, Shen F Y, Liu Y H, Cho Y 2022 Nanomaterials 12 2100Google Scholar

    [149]

    Wachter S, Polyushkin D K, Bethge O, Mueller T 2017 Nat. Commun. 8 14948Google Scholar

    [150]

    Chen X Y, Xie Y F, Sheng Y C, Tang H W, Wang Z M, Wang Y, Wang Y, Liao F Y, Ma J Y, Guo X J, Tong L, Liu H Q, Liu H, Wu T X, Cao J X, Bu S T, Shen H, Bai F Y, Huang D M, Deng J N, Riaud A, Xu Z H, Wu C J, Xing S W, Lu Y, Ma S L, Sun Z Z, Xue Z Y, Di Z F, Gong X, Zhang D W, Zhou P, Wan J, Bao W Z 2021 Nat. Commun. 12 5953Google Scholar

    [151]

    Ao M R, Zhou X C, Kong X J, Gou S F, Chen S F, Dong X Q, Zhu Y X, Sun Q C, Zhang Z J, Zhang J S, Zhang Q R, Hu Y, Sheng C M, Wang K X, Wang S Y, Wan J, Han J, Bao W Z, Zhou P 2025 Nature 640 654Google Scholar

    [152]

    Zhang W H, Ma S C, Ji X L, Liu X, Cong Y Q, Shi L P 2024 Nat. Electron. 7 954Google Scholar

    [153]

    Yang Z Y, Zhang Z, Huo S D, Meng F Y, Wang Y, Ma Y X, Liu B Y, Meng F Y, Xie Y, Wu E X 2025 SmartMat 6 e70005Google Scholar

    [154]

    Zhai Y B, Xie P, Hu J H, Chen X, Feng Z H, Lv Z Y, Ding G L, Zhou K, Zhou Y, Han S T 2023 Appl. Phys. Rev. 10 11408Google Scholar

    [155]

    Zhu K C, Pazos S, Aguirre F, Shen Y Q, Yuan Y, Zheng W W, Alharbi O, Villena M A, Fang B, Li X Y, Milozzi A, Farronato M, Muñoz-Rojo M, Wang T, Li R, Fariborzi H, Roldan J B, Benstetter G, Zhang X X, Alshareef H N, Grasser T, Wu H Q, Ielmini D, Lanza M 2023 Nature 618 57Google Scholar

    [156]

    Jain S, Li S F, Zheng H F, Li L Q, Fong X Y, Ang K W 2025 Nat. Commun. 16 2719Google Scholar

    [157]

    Kang J, Shin H, Kim K S, Song M, Lee D, Meng Y, Choi C, Suh J M, Kim B J, Kim H, Hoang A T, Park B, Zhou G Y, Sundaram S, Vuong P, Shin J, Choe J, Xu Z, Younas R, Kim J S, Han S, Lee S, Kim S O, Kang B, Seo S, Ahn H, Seo S, Reidy K, Park E, Mun S, Park M, Lee S, Kim H, Kum H S, Lin P, Hinkle C, Ougazzaden A, Ahn J, Kim J, Bae S 2023 Nat. Mater. 22 1470Google Scholar

    [158]

    Jin T Y, Gao J, Wang Y N, Chen W 2022 Sci. China Mater. 65 2154Google Scholar

    [159]

    Shinde S M, Das T, Hoang A T, Sharma B K, Chen X, Ahn J H 2018 Adv. Funct. Mater. 28 1706231

    [160]

    Tang J, Wang Q Q, Tian J P, Li X Z, Li N, Peng Y L, Li X Z, Zhao Y C, He C L, Wu S Y, Li J W, Guo Y T, Huang B Y, Chu Y B, Ji Y R, Shang D S, Du L J, Yang R, Yang W, Bai X D, Shi D X, Zhang G Y 2023 Nat. Commun. 14 3633Google Scholar

    [161]

    Peng Y L, Cui C Y, Li L, Wang Y C, Wang Q Q, Tian J P, Huang Z H, Huang B Y, Zhang Y K, Li X Z, Tang J, Chu Y B, Yang W, Shi D X, Du L J, Li N, Zhang G Y 2024 Nat. Commun. 15 10833Google Scholar

    [162]

    Chen J L, Wang W G, Yan X D 2025 npj Unconve. Comput. 2 19Google Scholar

    [163]

    Steeneken P G, Soikkeli M, Arpiainen S, Rantala A, Jaaniso R, Pezone R, Vollebregt S, Lukas S, Kataria S, Houmes M J A, Álvarez-Diduk R, Lee K, Suryo Wasisto H, Anzinger S, Fueldner M, Verbiest G J, Alijani F, Hoon Shin D, Malic E, van Rijn R, Nevanen T K, Centeno A, Zurutuza A, van der Zant H S J, Merkoçi A, Duesberg G S, Lemme M C 2025 2D Mater. 12 023002Google Scholar

    [164]

    Meng Y, Feng J G, Han S, Xu Z H, Mao W B, Zhang T, Kim J S, Roh I, Zhao Y P, Kim D, Yang Y, Lee J, Yang L, Qiu C, Bae S 2023 Nat. Rev. Mater. 8 498Google Scholar

    [165]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photonics 11 366Google Scholar

    [166]

    Zhang D H, Xu Z, Huang Z Y, Gutierrez A R, Blocker C J, Liu C H, Lien M, Cheng G, Liu Z, Chun I Y, Fessler J A, Zhong Z H, Norris T B 2021 Nat. Commun. 12 2413Google Scholar

    [167]

    Chen M L, Ma Y C, Aslam N, Liu C, Chen Y Q, Luo L Q, Zhang X W, Mai K R, Xiao H, Zhu K C, Alharbi O, Zheng D X, Xu X M, Liao H G, Yang Y M, Wang H, Zhou Z C, Wang H W, Tian B, Li J Z, He X, Chang K, Wan Y T, Shamim A, Alshareef H N, Lanza M, Anthopoulos T D, Han Z, Xue F, Zhang X X 2025 Nat. Nanotechnol. 20 1633Google Scholar

    [168]

    Dang B J, Zhang T, Wu X L, Liu K Q, Huang R, Yang Y C 2024 Nat. Electron. 7 991Google Scholar

    [169]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [170]

    Huang P Y, Jiang B Y, Chen H J, Xu J Y, Wang K, Zhu C Y, Hu X Y, Li D, Zhen L, Zhou F C, Qin J K, Xu C Y 2023 Nat. Commun. 14 6736Google Scholar

    [171]

    Ma S L, Wu T X, Chen X Y, Wang Y, Ma J Y, Chen H L, Riaud A, Wan J, Xu Z H, Chen L, Ren J Y, Zhang D W, Zhou P, Chai Y, Bao W Z 2022 Sci. Adv. 8 9328Google Scholar

    [172]

    Zhao G Y, Wei Z, Wang W W, Feng D H, Xu A X, Liu W L, Song Z T 2020 Nanotechnol. Rev. 9 182Google Scholar

    [173]

    Akbulut M, Scholar E A 2018 IEEE Nanotechnol. Mag. 12 19

    [174]

    Song H F, Liu J M, Liu B, Wu J Q, Cheng H M, Kang F Y 2018 Joule 2 442Google Scholar

    [175]

    Wu F, Tian H, Shen Y, Zhu Z Q, Liu Y M, Hirtz T, Wu R, Gou G Y, Qiao Y C, Yang Y, Xing C Y, Zhang G, Ren T L 2022 Adv. Mater. Interfaces 9 2200409Google Scholar

    [176]

    Woon W Y, Kasperovich A, Wen J R, Hu K K, Malakoutian M, Jhang J H, Vaziri S, Datye I, Shih C C, Hsu J F, Bao X Y, Wu Y, Nomura M, Chowdhury S, Liao S S 2025 Nat. Rev. Electr. Eng. 2 598Google Scholar

    [177]

    Kumari M, Singh N K, Sahoo M, Rahaman H 2022 Silicon 14 4473Google Scholar

    [178]

    Rizzi L, Zienert A, Schuster J, Köhne M, Schulz S E 2019 Comp. Mater. Sci. 161 364Google Scholar

    [179]

    Guo C H, Xu J Q, Ping Y 2021 J. Phys. Condens. Matter. 33 234001Google Scholar

    [180]

    Yu W, Cheng S C, Li Z Y, Liu L, Zhang Z F, Zhao Y P, Guo Y Z, Liu S 2024 Fundament. Res. 4 1442Google Scholar

    [181]

    Chen S X, Zhang H Y, Ling Z C, Zhai J W, Yu B 2025 ASPDAC ’25: 30th Asia and South Pacific Design Automation Conference Tokyo, Japan, January 20–23, 2025 p285

    [182]

    Das Sharma D, Pasdast G, Tiagaraj S, Aygün K 2024 Nat. Electron. 7 244Google Scholar

    [183]

    Gupta S, Zhang J J, Lei J C, Yu H, Liu M J, Zou X L, Yakobson B I 2025 Chem. Rev. 125 786Google Scholar

    [184]

    Li X F, Wu Z H, Rzepa G, Karner M, Xu H Q, Wu Z C, Wang W, Yang G H, Luo Q, Wang L F, Li L 2025 Fundament. Res. 5 2149Google Scholar

    [185]

    Wang S X, Yu S X, Chen W T, Wang Y, Bi A T, An Z Y, Diao Y, Li W, Wang Y C 2025 Appl. Therm. Eng. 279 127699Google Scholar

    [186]

    Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778Google Scholar

  • [1] 刘斌, 刘庆, 潘二, 卞仁吉, 罗消, 李军配, 刘富才. 二维范德华铁电材料的研究进展.  , doi: 10.7498/aps.75.20251367
    [2] 闻雨, 韩素婷, 周晔. 二维材料与人工视觉系统的多维融合: 前沿突破与范式革新.  , doi: 10.7498/aps.74.20250703
    [3] 崔月赢, 宋俊明, 赵伟玮, 杨昉, 刘宏微, 倪振华, 吕俊鹏. 二维材料宽谱光电探测器研究进展.  , doi: 10.7498/aps.74.20251115
    [4] 石旗, 田茂鑫, 杨权, 张晓伟, 赵昱达. 基于二维材料光电器件的传感器内计算与应用进展.  , doi: 10.7498/aps.74.20251093
    [5] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , doi: 10.7498/aps.73.20231166
    [6] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展.  , doi: 10.7498/aps.72.20231786
    [7] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , doi: 10.7498/aps.72.20222095
    [8] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展.  , doi: 10.7498/aps.72.20230729
    [9] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望.  , doi: 10.7498/aps.71.20220030
    [10] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , doi: 10.7498/aps.71.20221424
    [11] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展.  , doi: 10.7498/aps.70.20210004
    [12] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , doi: 10.7498/aps.70.20202132
    [13] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , doi: 10.7498/aps.70.20201425
    [14] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , doi: 10.7498/aps.69.20191486
    [15] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , doi: 10.7498/aps.69.20200709
    [16] 徐依全, 王聪. 基于二维材料的全光器件.  , doi: 10.7498/aps.69.20200654
    [17] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , doi: 10.7498/aps.67.20181636
    [18] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , doi: 10.7498/aps.66.196802
    [19] 杨晓阔, 蔡理, 康强, 柏鹏, 赵晓辉, 冯朝文, 张立森. 磁性量子元胞自动机逻辑电路的转换特性研究.  , doi: 10.7498/aps.60.098503
    [20] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路.  , doi: 10.7498/aps.56.1054
计量
  • 文章访问数:  474
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-13
  • 修回日期:  2025-11-14
  • 上网日期:  2025-11-27

/

返回文章
返回
Baidu
map