-
高压偏振拉曼光谱(High-pressure Polarized Raman Spectroscopy,HPRS)是一种能够定量提取拉曼张量元随压力变化的光谱表征方法.通过调整金刚石对顶砧(DAC)的入射光与散射光的偏振方向,测量角度依赖的高压拉曼光谱强度.本文构建了一种基于DAC的原位偏振拉曼装置,在背散射配置中引入半波片,选取常用于单晶Si(100)和二维薄片Te(001)为研究对象,实现样品静止条件下的偏振角连续扫描. HPRS分析显示,Si(100)的F2g拉曼活性模的拉曼张量元在低于12 GPa压力下呈反比例函数式减小,反映了Si在无相变前提下的非线性压力响应; Te(001)的面内各向异性随压力的增加而增强且部分模偏离理想形式,其中A1拉曼活性模的张量元比值b/c/在~1.5 GPa附近出现由降转升的拐点,与基于输运实验测量的电子结构相变点相近(~2GPa).本研究构建了HPRS原位测量与分析框架,实现了从基准体系验证到物质的应用,表明HPRS对微弱对称性扰动与电子结构重排的灵敏响应,为判断物质在高压下的电极化性、键合特性等提供直接、可量化的证据补充.High-pressure polarized Raman spectroscopy (HPRS) refers to a spectroscopic technique in which a diamond anvil cell (DAC) is employed as the pressure-generating device, and the polarization orientations of both incident and scattered light are systematically controlled to measure the angular dependence of Raman spectral intensities under varying pressures. This enables the quantitative extraction of the pressure evolution of Raman tensor elements. In this study, we developed an in-situ high-pressure polarized Raman setup based on a backscattering configuration incorporating a half-wave plate, allowing continuous variation of the polarization angle without rotating the sample. Quantitative determination of Raman tensor elements was achieved through polar coordinate fitting of the measured intensity profiles. Singlecrystal Si(100), commonly used for Raman calibration, and two-dimensional Te(110) flakes exhibiting in-plane anisotropy were selected as model systems for investigation. Our results show that over the pressure range of 0~12 GPa, the angular distribution pattern and periodicity of Si(100) remain unchanged, while the main Raman peak exhibits an approximately linear blue shift with increasing pressure. The Raman tensorelement associated with the active mode decreases according to an inverse power-law function, reflecting the response of the polarizability derivative to volume compression in the absence of phase transitions. For two-dimensional Te(110), the in-plane anisotropy increases with pressure, accompanied by deviations of certain modes from ideal symmetry-predicted behavior. Notably, the ratio of Raman tensor elements displays an inflection point near 1.5 GPa, transitioning from a decreasing to an increasing trend, with clearly observable changes in polarized Raman responses within the 1.2~1.6 GPa range. It is in close proximity to the electronic structure phase transition point determined from transport experiments (~2 GPa). Collectively, studies on single-crystal Si(100) and two-dimensional Te(110) demonstrate that HPRS is a robust in-situ method for probing symmetry evolution, anisotropic behavior, and incipient electronic rearrangements in materials under compression.
-
[1] Pu M F, Zhang F, Liu S, Irifune T, Lei L 2019 Chin. Phys. B 28 053102
[2] Liu S, Tang Q Q, Wu B B, Zhang F, Liu J Y, Fan C M, Lei L 2021 Chin. Phys. B 30 016301
[3] Wang Y J, Wu B B, Liu J Y, Fang L M, Liu B Q, Lei L 2025 Spectrosc. Spectr. Anal. 45 59(in Chinese)[王艺佳,吴彬彬,刘静仪,房雷鸣,刘本琼,雷力2025光谱学 与光谱分析45 59]
[4] Zhang F, Liu S, Pu M F, Tang Q Q, Wu B B, Li L, Hu Q W, Xia Y H, Fang L M, Lei L 2021 Spectrosc. Spectr. Anal. 41 807(in Chinese)[张峰,刘珊,蒲梅芳,唐琦琪, 吴彬彬,李林,胡启威,夏元华,房雷鸣,雷力2021光谱学与光谱分析41 807]
[5] Zhang F, Tao Y, Tang Q Q, Wu B B, Liu S, Lei L 2021 J. Light Scatt. 33 5(in Chinese)[张峰,陶雨,唐琦琪,吴彬彬,刘珊,雷力2021光散射学报33 5]
[6] Tao Y, Liu J Y, Wu B B, Liu S, Lei L 2022 J. Light Scatt. 34 261(in Chinese)[陶 雨,刘静仪,吴彬彬,雷力2022光散射学报34 261]
[7] Wu B B, Li Y, Lin Y R, Liu J Y, Tao Y, Chang X, Lei L 2025 Appl. Phys. Lett. 126 112109
[8] Wu B B, Lin Y R, Li Y, Chang X, Tao Y, Liu J Y, Lei L 2025 Appl. Phys. Lett. 126 102103
[9] Liu J Y, Tao Y, Fan C M, Wu B B, Tang Q Q, Lei L 2022 Chin. Phys. B 31 037801
[10] Liu J Y, Tao Y, Fan C M, Wu B B, Lei L 2022 Chin. J. High Press. Phys. 36 051102 (in Chinese)[刘静仪,陶雨,范春梅,吴彬彬,雷力2022高压 36 051102]
[11] Liu J Y, Wu B B, Zhang L L, Chang X, Zhao X Y, Fan C M, Pu M F, Zhou C Y, Wang X L, Lei L 2025 J. Phys. Chem. C 129 9755
[12] Wen T, Zhang M D, Li J, Jiao C Y, Pei S H, Wang Z H, Xia J 2023 Nanoscale Horiz. 8 516
[13] Yan Y T, Chen L Y, Hong Z A, Dai K, Li Y F, Jiang K, Zhang Z Y, Dong H L, Shang L Y, Hu Z G 2025 Phys. Rev. B 111 195303
[14] Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, 2024 J. Appl. Phys. 136 035901
[15] Ribeiro H B, Pimenta M A, De Matos C J S, Moreira R L, Rodin A S, Zapata J D, De Souza E A T, Castro Neto A H 2015 ACS nano 9 4270
[16] Yan Y T, Chen L Y, Dai K, Li Y F, Wang L, Jiang K, Cui A Y, Zhang J Z, Hu Z G 2023 J. Phys. Chem. Lett. 14 7618
[17] Song Q J, Pan X C, Wang H F, Zhang K, Tan Q H, Li P, Wan Y, Wang Y L, Xu X L, Lin M L, Wan X G, Song F Q, Dai L 2016 Sci. Rep. 6 29254
[18] Ma X L, Guo P J, Yi C J, Yu Q H, Zhang A M, Ji J T, Tian Y, Jin F, Wang Y Y, Liu K, Xia T L, Shi Y G, Zhang Q M 2016 Phys. Rev. B 94 214105
[19] Cheng X R, Huangfu Z B, Wang J B, Zhang H J, Feng S Q, Liang Y F, Zhu X, Wang Z, Wu X W, Yang K 2024 J. Alloys Compd. 970 172636
[20] Richet P, Xu J A, Mao H K 1986 J. Geophys. Res.:Solid Earth 91 4673
[21] Liu X L, Zhang X, Lin M L, Tan P H 2017 Chin. Phys. B 26 067802
[22] De Wolf I 1996 Semicond. Sci. Technol. 11 139
[23] Menendez J, Cardona M 1984 Phys. Rev. B 29 2051
[24] Nye J F 1985 Physical Properties of Crystals:Their Representation by Tensors and Matrices (Oxford:Clarendon Press) pp75-76
[25] Cardona M, Güntherodt G 1982 Light Scatt. in Solids II (New York:SpringerVerlag Berlin Heidelberg) p269
[26] Mossbrucker J, Grotjohn T A 1996 Diam. Relat. Mater. 5 1333
[27] Chang Y, He S S, Sun M Y, Xiao A X, Zhao J X, Ma L L, Qiu W 2021 J. Spectrosc. 2021 2860007
[28] Mujica A, Rubio A, Munoz A, Needs R J 2003 Rev. Mod. Phys. 75 863
[29] Anzellini S, Wharmby M T, Miozzi F, Kleppe A, Daisenberger D, Wilhelm H 2019 Sci. Rep. 9 15537
[30] Cardona M 1959 J. Phys. Chem. Solids 8 204
[31] Tong L, Huang X Y, Wang P, Ye L, Peng M, An L C, Sun Q D, Zhang Y, Yang G M, Li Z, Zhong F, Wang F, Wang Y X, Motlag M,Wu W Z, Cheng G J, Hu W D 2020 Nat. Commun. 11 2308.
[32] Yu J, Mu H R, Wang P, Li H Z, Yang Z X, Ren J, Li Y, Mei L Y, Zhang J N, Yu W Z, Cui N, Yuan J, Wu J, Lan S, Zhang G Y, Lin S H 2024 ACS nano 18 19099
[33] Duan Y H, Zhao D M, Li Z L, Yu J, Liang Y, Wang Y Y 2025 J. Appl. Phys. 137 024301
[34] Qiao J, Pan Y, Yang F 2018 Sci. Bull. 63 159
[35] Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T, Iwasa Y 2019 Proc. Natl. Acad. Sci. 116 25530
[36] Zou B Y, Wang S, Wang Q L, Wang G Y, Zhang G Z, Jiang J L, Cui J, He J R, XiH Z, Fu H L, Wang Z C, Wang C, Wang Q S, Liu C L 2024 Appl. Phys. Lett. 124 102105
[37] Li H, Wu K D, Yang S J, Boland T, Chen B, Singh A K, Tongay S, 2019 Nanoscale 11 20245
[38] Zhao L X, Pei C Y, Wu J F, Zhao Y, Wang Q, Zhu B S, Li C H, Cao W Z, Qi Y P 2023 Phys. Rev. B 108 214518
[39] Yadav R A, Padma N, Sen S, Chandrakumar K R S, Donthula H, Rao R 2020 Appl. Surf. Sci. 531 147303
计量
- 文章访问数: 33
- PDF下载量: 2
- 被引次数: 0








下载: