搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压偏振拉曼光谱及其应用

王泽瑜 刘静仪 王扬斌 王梦涵 李敬業 晏成熙 雷力

引用本文:
Citation:

高压偏振拉曼光谱及其应用

王泽瑜, 刘静仪, 王扬斌, 王梦涵, 李敬業, 晏成熙, 雷力

High-Pressure Polarized Raman Device and Its Applications

WANG Zeyu, LIU Jingyi, WANG Yangbin, WANG Menghan, LI Jingye, YAN Chengxi, LEI Li
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 高压偏振拉曼光谱(High-pressure Polarized Raman Spectroscopy,HPRS)是一种能够定量提取拉曼张量元随压力变化的光谱表征方法.通过调整金刚石对顶砧(DAC)的入射光与散射光的偏振方向,测量角度依赖的高压拉曼光谱强度.本文构建了一种基于DAC的原位偏振拉曼装置,在背散射配置中引入半波片,选取常用于单晶Si(100)和二维薄片Te(001)为研究对象,实现样品静止条件下的偏振角连续扫描. HPRS分析显示,Si(100)的F2g拉曼活性模的拉曼张量元在低于12 GPa压力下呈反比例函数式减小,反映了Si在无相变前提下的非线性压力响应; Te(001)的面内各向异性随压力的增加而增强且部分模偏离理想形式,其中A1拉曼活性模的张量元比值b/c/在~1.5 GPa附近出现由降转升的拐点,与基于输运实验测量的电子结构相变点相近(~2GPa).本研究构建了HPRS原位测量与分析框架,实现了从基准体系验证到物质的应用,表明HPRS对微弱对称性扰动与电子结构重排的灵敏响应,为判断物质在高压下的电极化性、键合特性等提供直接、可量化的证据补充.
    High-pressure polarized Raman spectroscopy (HPRS) refers to a spectroscopic technique in which a diamond anvil cell (DAC) is employed as the pressure-generating device, and the polarization orientations of both incident and scattered light are systematically controlled to measure the angular dependence of Raman spectral intensities under varying pressures. This enables the quantitative extraction of the pressure evolution of Raman tensor elements. In this study, we developed an in-situ high-pressure polarized Raman setup based on a backscattering configuration incorporating a half-wave plate, allowing continuous variation of the polarization angle without rotating the sample. Quantitative determination of Raman tensor elements was achieved through polar coordinate fitting of the measured intensity profiles. Singlecrystal Si(100), commonly used for Raman calibration, and two-dimensional Te(110) flakes exhibiting in-plane anisotropy were selected as model systems for investigation. Our results show that over the pressure range of 0~12 GPa, the angular distribution pattern and periodicity of Si(100) remain unchanged, while the main Raman peak exhibits an approximately linear blue shift with increasing pressure. The Raman tensorelement associated with the active mode decreases according to an inverse power-law function, reflecting the response of the polarizability derivative to volume compression in the absence of phase transitions. For two-dimensional Te(110), the in-plane anisotropy increases with pressure, accompanied by deviations of certain modes from ideal symmetry-predicted behavior. Notably, the ratio of Raman tensor elements displays an inflection point near 1.5 GPa, transitioning from a decreasing to an increasing trend, with clearly observable changes in polarized Raman responses within the 1.2~1.6 GPa range. It is in close proximity to the electronic structure phase transition point determined from transport experiments (~2 GPa). Collectively, studies on single-crystal Si(100) and two-dimensional Te(110) demonstrate that HPRS is a robust in-situ method for probing symmetry evolution, anisotropic behavior, and incipient electronic rearrangements in materials under compression.
  • [1]

    Pu M F, Zhang F, Liu S, Irifune T, Lei L 2019 Chin. Phys. B 28 053102

    [2]

    Liu S, Tang Q Q, Wu B B, Zhang F, Liu J Y, Fan C M, Lei L 2021 Chin. Phys. B 30 016301

    [3]

    Wang Y J, Wu B B, Liu J Y, Fang L M, Liu B Q, Lei L 2025 Spectrosc. Spectr. Anal. 45 59(in Chinese)[王艺佳,吴彬彬,刘静仪,房雷鸣,刘本琼,雷力2025光谱学 与光谱分析45 59]

    [4]

    Zhang F, Liu S, Pu M F, Tang Q Q, Wu B B, Li L, Hu Q W, Xia Y H, Fang L M, Lei L 2021 Spectrosc. Spectr. Anal. 41 807(in Chinese)[张峰,刘珊,蒲梅芳,唐琦琪, 吴彬彬,李林,胡启威,夏元华,房雷鸣,雷力2021光谱学与光谱分析41 807]

    [5]

    Zhang F, Tao Y, Tang Q Q, Wu B B, Liu S, Lei L 2021 J. Light Scatt. 33 5(in Chinese)[张峰,陶雨,唐琦琪,吴彬彬,刘珊,雷力2021光散射学报33 5]

    [6]

    Tao Y, Liu J Y, Wu B B, Liu S, Lei L 2022 J. Light Scatt. 34 261(in Chinese)[陶 雨,刘静仪,吴彬彬,雷力2022光散射学报34 261]

    [7]

    Wu B B, Li Y, Lin Y R, Liu J Y, Tao Y, Chang X, Lei L 2025 Appl. Phys. Lett. 126 112109

    [8]

    Wu B B, Lin Y R, Li Y, Chang X, Tao Y, Liu J Y, Lei L 2025 Appl. Phys. Lett. 126 102103

    [9]

    Liu J Y, Tao Y, Fan C M, Wu B B, Tang Q Q, Lei L 2022 Chin. Phys. B 31 037801

    [10]

    Liu J Y, Tao Y, Fan C M, Wu B B, Lei L 2022 Chin. J. High Press. Phys. 36 051102 (in Chinese)[刘静仪,陶雨,范春梅,吴彬彬,雷力2022高压 36 051102]

    [11]

    Liu J Y, Wu B B, Zhang L L, Chang X, Zhao X Y, Fan C M, Pu M F, Zhou C Y, Wang X L, Lei L 2025 J. Phys. Chem. C 129 9755

    [12]

    Wen T, Zhang M D, Li J, Jiao C Y, Pei S H, Wang Z H, Xia J 2023 Nanoscale Horiz. 8 516

    [13]

    Yan Y T, Chen L Y, Hong Z A, Dai K, Li Y F, Jiang K, Zhang Z Y, Dong H L, Shang L Y, Hu Z G 2025 Phys. Rev. B 111 195303

    [14]

    Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, 2024 J. Appl. Phys. 136 035901

    [15]

    Ribeiro H B, Pimenta M A, De Matos C J S, Moreira R L, Rodin A S, Zapata J D, De Souza E A T, Castro Neto A H 2015 ACS nano 9 4270

    [16]

    Yan Y T, Chen L Y, Dai K, Li Y F, Wang L, Jiang K, Cui A Y, Zhang J Z, Hu Z G 2023 J. Phys. Chem. Lett. 14 7618

    [17]

    Song Q J, Pan X C, Wang H F, Zhang K, Tan Q H, Li P, Wan Y, Wang Y L, Xu X L, Lin M L, Wan X G, Song F Q, Dai L 2016 Sci. Rep. 6 29254

    [18]

    Ma X L, Guo P J, Yi C J, Yu Q H, Zhang A M, Ji J T, Tian Y, Jin F, Wang Y Y, Liu K, Xia T L, Shi Y G, Zhang Q M 2016 Phys. Rev. B 94 214105

    [19]

    Cheng X R, Huangfu Z B, Wang J B, Zhang H J, Feng S Q, Liang Y F, Zhu X, Wang Z, Wu X W, Yang K 2024 J. Alloys Compd. 970 172636

    [20]

    Richet P, Xu J A, Mao H K 1986 J. Geophys. Res.:Solid Earth 91 4673

    [21]

    Liu X L, Zhang X, Lin M L, Tan P H 2017 Chin. Phys. B 26 067802

    [22]

    De Wolf I 1996 Semicond. Sci. Technol. 11 139

    [23]

    Menendez J, Cardona M 1984 Phys. Rev. B 29 2051

    [24]

    Nye J F 1985 Physical Properties of Crystals:Their Representation by Tensors and Matrices (Oxford:Clarendon Press) pp75-76

    [25]

    Cardona M, Güntherodt G 1982 Light Scatt. in Solids II (New York:SpringerVerlag Berlin Heidelberg) p269

    [26]

    Mossbrucker J, Grotjohn T A 1996 Diam. Relat. Mater. 5 1333

    [27]

    Chang Y, He S S, Sun M Y, Xiao A X, Zhao J X, Ma L L, Qiu W 2021 J. Spectrosc. 2021 2860007

    [28]

    Mujica A, Rubio A, Munoz A, Needs R J 2003 Rev. Mod. Phys. 75 863

    [29]

    Anzellini S, Wharmby M T, Miozzi F, Kleppe A, Daisenberger D, Wilhelm H 2019 Sci. Rep. 9 15537

    [30]

    Cardona M 1959 J. Phys. Chem. Solids 8 204

    [31]

    Tong L, Huang X Y, Wang P, Ye L, Peng M, An L C, Sun Q D, Zhang Y, Yang G M, Li Z, Zhong F, Wang F, Wang Y X, Motlag M,Wu W Z, Cheng G J, Hu W D 2020 Nat. Commun. 11 2308.

    [32]

    Yu J, Mu H R, Wang P, Li H Z, Yang Z X, Ren J, Li Y, Mei L Y, Zhang J N, Yu W Z, Cui N, Yuan J, Wu J, Lan S, Zhang G Y, Lin S H 2024 ACS nano 18 19099

    [33]

    Duan Y H, Zhao D M, Li Z L, Yu J, Liang Y, Wang Y Y 2025 J. Appl. Phys. 137 024301

    [34]

    Qiao J, Pan Y, Yang F 2018 Sci. Bull. 63 159

    [35]

    Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T, Iwasa Y 2019 Proc. Natl. Acad. Sci. 116 25530

    [36]

    Zou B Y, Wang S, Wang Q L, Wang G Y, Zhang G Z, Jiang J L, Cui J, He J R, XiH Z, Fu H L, Wang Z C, Wang C, Wang Q S, Liu C L 2024 Appl. Phys. Lett. 124 102105

    [37]

    Li H, Wu K D, Yang S J, Boland T, Chen B, Singh A K, Tongay S, 2019 Nanoscale 11 20245

    [38]

    Zhao L X, Pei C Y, Wu J F, Zhao Y, Wang Q, Zhu B S, Li C H, Cao W Z, Qi Y P 2023 Phys. Rev. B 108 214518

    [39]

    Yadav R A, Padma N, Sen S, Chandrakumar K R S, Donthula H, Rao R 2020 Appl. Surf. Sci. 531 147303

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱.  , doi: 10.7498/aps.71.20220053
    [2] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储.  , doi: 10.7498/aps.68.20182215
    [3] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射.  , doi: 10.7498/aps.68.20190458
    [4] 盛子城, 王腾, 周桂耀, 夏长明, 刘建涛, 李波瑶, 樊海霞, 陈云, 侯峙云. 基于空芯微结构光纤拉曼探针的实验研究.  , doi: 10.7498/aps.67.20180684
    [5] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , doi: 10.7498/aps.64.149101
    [6] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响.  , doi: 10.7498/aps.64.034212
    [7] 王美洁, 贾维国, 张思远, 乔海龙, 杨军, 张俊萍, 门克内木乐. 拉曼效应对低双折射光纤偏振特性的影响.  , doi: 10.7498/aps.63.104204
    [8] 徐勇根, 王时建, 吉驭嫔, 徐竟跃, 卢宏, 刘晓旭, 张世昌. 拉曼型自由电子激光器中相对论电子运动稳定性的比较研究.  , doi: 10.7498/aps.62.084104
    [9] 张季, 张德明, 王迪, 张庆礼, 孙敦陆, 殷绍唐. Bi2ZnOB2O6单晶偏振拉曼光谱.  , doi: 10.7498/aps.62.237802
    [10] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究.  , doi: 10.7498/aps.62.246101
    [11] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应.  , doi: 10.7498/aps.61.157801
    [12] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究.  , doi: 10.7498/aps.60.037402
    [13] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , doi: 10.7498/aps.60.050702
    [14] 周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛. KTN晶体及其熔体结构的高温拉曼光谱研究.  , doi: 10.7498/aps.58.570
    [15] 朱应涛, 杨传路, 王美山, 董永绵. β-Si3N4电子结构和红外和拉曼频率的第一性原理研究.  , doi: 10.7498/aps.57.1048
    [16] 韩 茹, 杨银堂, 柴常春. n-SiC的电子拉曼散射及二级拉曼谱研究.  , doi: 10.7498/aps.57.3182
    [17] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱.  , doi: 10.7498/aps.54.5089
    [18] 江美福, 宁兆元. 氟化类金刚石薄膜的拉曼和红外光谱结构研究.  , doi: 10.7498/aps.53.1588
    [19] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究.  , doi: 10.7498/aps.52.237
    [20] 方励之, 刘永镇. 强磁场中相对论性电子的拉曼散射.  , doi: 10.7498/aps.25.521
计量
  • 文章访问数:  33
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-03

/

返回文章
返回
Baidu
map