-
Quantum teleportation enables the secure transfer of unknown quantum states between remote users and is a key technology in quantum information science. Networks based on continuous-variable entangled states can extend both the user capacity and the transmission distance of quantum teleportation. This paper analyzes quantum teleportation network schemes based on three types of continuous-variable entangled states (EPR entangled state, GHZ entangled state, and linear cluster entangled state). The results show that due to the correlation properties of different types of entangled states, different quantum teleportation networks have advantages in terms of fidelity, transmission distance, and quantum resource consumption of quantum teleportation. For low-error-rate applications such as quantum computing, EPR states provide the highest fidelity. When parallel teleportation of multiple states is required, networks based on EPR or cluster entangled states provide the necessary throughput performance. In scenarios where quantum resources are severely limited, the GHZ-based teleportation protocols minimize the number of entangled modes while preserving acceptable fidelity. For applications demanding controlled teleportation, both GHZ and cluster states supply the essential multi-party correlations. Notably, cluster states offer a practical trade-off between fidelity and resource overhead, rendering them attractive for certain implementations. This study provides a reference for the design of multi-user metropolitan quantum teleportation networks.
-
Keywords:
- Quantum teleportation /
- Multipartite entanglement /
- Quantum network
-
[1] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
[2] Cheng J, Liang S, Qin J, Li J, Yan Z, Jia X, Xie C, Peng K 2024 npj Quantum Inf. 10 20
[3] Yan Z, Jia X 2025 Light: Sci. Appl. 14 126
[4] Liang S, Cheng J, Qin J, Li J, Shi Y, Yan Z, Jia X, Xie C, Peng K 2024 Phys. Rev. Lett. 132 140802
[5] Lei X, Li J, Zhou X, Yan J, Ji M, Yan Z, Jia X, Xie C, Peng K 2025 Phys. Rev. Lett. 135 130806
[6] Malia B K, Wu Y, Martínez-Rincón J, Kasevich M A 2022 Nature 612 661
[7] Huo M, Qin J, Cheng J, Yan Z, Qin Z, Su X, Jia X, Xie C, Peng K 2018 Sci. Adv. 4 eaas9401
[8] An Y Y, He Q, Xue W, Jiang M H, Yang C, Lu Y Q, Zhu S, Ma X S 2025 Phys. Rev. Lett. 135 010804
[9] Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023 Nat. Rev. Phys. 5 339
[10] Zhang Z, Guo Z, Qiu Z 2025 Chin. Phys. B 34 040301
[11] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
[12] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
[13] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[14] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70
[15] Shen S, Yuan C, Zhang Z, Yu H, Zhang R, Yang C, Li H, Wang Z, Wang Y, Deng G, Song H, You L, Fan Y, Guo G, Zhou Q 2023 Light: Sci. Appl. 12 115
[16] Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430
[17] Hermans S L N, Pompili M, Beukers H K C, Baier S, Borregaard J, Hanson R 2022 Nature 605 663
[18] Yan J, Zhou X, Qin Y, Yan Z, Jia X, Xie C, Peng K 2024 Phys. Rev. Res. 6 L032062
[19] Liu D, Jin Z, Liu J, Zou X, Ren X, Li H, You L, Feng X, Liu F, Cui K, Huang Y, Zhang W 2025 Light: Sci. Appl. 14 243
[20] Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932
[21] Azuma K, Economou S E, Elkouss D, Hilaire P, Jiang L, Lo H K, Tzitrin I 2023 Rev. Mod. Phys. 95 045006
[22] Wang S, Dou M, Wu Y, Guo G, Guo G 2024 Chin. J. Quantum Electron. 41 1 (in chinese) [王升斌,窦猛汉,吴玉椿,郭国平,郭光灿 2024 量子电子学报 41 1]
[23] Kimble H J 2008 Nature 453 1023
[24] Collins O A, Jenkins S D, Kuzmich A, Kennedy T A B 2007 Phys. Rev. Lett. 98 060502
[25] Su X, Tian C, Deng X, Li Q, Xie C, Peng K 2016 Phys. Rev. Lett. 117 240503
[26] Takeda S, Takase K, Furusawa A 2019 Sci. Adv. 5 eaaw4530
[27] Wang Z, Li K, Wang Y, Zhou X, Cheng Y, Jing B, Sun F, Li J, Li Z, Wu B, Gong Q, He Q, Li B B, Yang Q F 2025 Light: Sci. Appl. 14, 164
[28] Wang M H, Hao S H, Qin Z Z, Su X L 2022 Acta Phys. Sin. 71 060312 (in chinese) [王美红,郝树宏,秦忠忠,苏晓龙 2022 71 060312]
[29] Yan Z, Wu L, Jia X, Liu Y, Deng R, Li S, Wang H, Xie C, Peng K 2017 Nat. Commun. 8 718
[30] Bartlett S D, Munro W J 2003 Phys. Rev. Lett. 90 117901
[31] Li Y Q, Lu L H, Zhu Q H 2023 Chin. Phys. Lett. 40 110304
[32] Silberhorn C, Korolkova N, Leuchs G 2002 Phys. Rev. Lett. 88 167902
[33] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. China Inf. Sci. 62 072501
[34] Zhao R, Zhou J, Shi R, Shi J, He G 2025 Phys. Rev. A 111 012613
[35] Gregory T, Moreau P A, Toninelli E, Padgett M J 2020 Sci. Adv. 6 eaay2652
[36] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828
[37] Lee S M, Lee S W, Jeong H, Park H S 2020 Phys. Rev. Lett. 124 060501
[38] Zhou Y Y, Mei P X, Liu Y H, W L, Li Y X, Yan Z H, Jia X J 2024 Chin. Phys. B 33 034209
[39] Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311
[40] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801
[41] Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photon. 9 641
计量
- 文章访问数: 48
- PDF下载量: 0
- 被引次数: 0








下载: