搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子核熔合反应研究进展

张钰海 董益菲 仲佳勇 张丰收

引用本文:
Citation:

原子核熔合反应研究进展

张钰海, 董益菲, 仲佳勇, 张丰收

Research Progress in Nuclear Fusion Reactions

ZHANG Yuhai, DONG Yifei, ZHONG Jiayong, ZHANG Fengshou
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 熔合反应不仅为研究量子多体系统中的动态演化和耗散机制提供了关键信息,也为探索原子核反应动力学与结构特征开辟了重要途径.本文系统给出了从氢到钔不同质量区元素的合成路径,以及从轻体系到重体系的各类重离子熔合反应的实验进展.评述了现有理论模型在描述俘获过程中的优越性与局限性,重点分析了唯象模型与微观动力学模型对不同反应体系熔合行为的优势与不足.在此基础上,进一步凝炼出熔合反应研究中的若干关键科学问题,包括重离子熔合阻碍、极深垒下熔合抑制、熔合几率PCN以及复合核的裂变势垒等,并对未来熔合反应的研究方向提出了展望与建议.本文数据集可在科学数据银行数据库https://doi.org/10.57760/sciencedb.j00213.00238中访问获取.
    Fusion reactions not only provide key information for studying the dynamic evolution and dissipation mechanisms in quantum many-body systems, but also open up an important avenue for exploring the reaction dynamics and structural characteristics of atomic nuclei. In recent years, with the continuous development of the technology for synthesizing new elements and their isotopes via fusion reactions, a series of new elements and their isotopes have been successfully synthesized. This paper systematically summarizes the synthesis pathways of elements in different mass regions, ranging from hydrogen to mendelevium, as well as the experimental progress of various heavy-ion fusion reactions from light systems to heavy systems. It reviews the advantages and limitations of current theoretical models in describing the capture process, and focuses on analyzing the strengths and shortcomings of phenomenological models and microscopic dynamic models in explaining the fusion behavior of different reaction systems. For the capture cross sections in light nuclei-light nuclei reaction systems, the EBD method, the CCFULL model, the universal Wong formula, and the ImQMD model all demonstrate good agreement with the experimental data. For the systems involving light nuclei-medium mass nuclei and light nuclei-heavy nuclei, the mentioned above models provide satisfactory descriptions. In particular, for the 16O+144Sm reaction system, the results obtained from the CCFULL model show good agreement with experimental data across both the sub-barrier and above-barrier energy regions. For the heavy nuclei-heavy nuclei systems, however, the EBD method holds a distinct advantage. Therefore, in subsequent predictions of the evaporation residue cross sections for superheavy elements, the results calculated by the EBD method can serve as the input for the capture cross section. On this basis, several key scientific issues in fusion reaction research are proposed, including heavy-ion fusion hindrance, the phenomenon of fusion suppression at extreme sub-barrier energies, fusion probability PCN, and the fission barrier of compound nuclei, etc. Furthermore, an outlook and suggestions for future research directions in fusion reactions are provided.
  • [1]

    Ma Y G 2020 Recent Progress in Nuclear Physics (Shanghai: Shanghai Jiao Tong University Press), pp 245-304. (in Chinese) [马余刚, 2020 原子核物理新进展 (上海交通大学出版社) 第 245-304 页]

    [2]

    Zhang F S, Ge L X 1998 Nuclear Multifragmentation (Beijing: Science Press), pp 268-274. (in Chinese) [张丰收, 葛凌霄 1998 原子核多重碎裂 (科学出版社) 第 268-274 页]

    [3]

    Zhang F S, Zhang Y H, Zhang M H, Tang N, Cheng S H, Li J J, Cheng W 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 392 (in Chinses) [张丰收, 张钰海, 张明昊, 唐娜, 程诗慧,李静静,程伟 2022 北京师范大学学报 (自然科学版) 58 392]

    [4]

    Thoennessen M 2016 The discovery of isotopes (Springer International Publishing Switzerland), pp 23-35

    [5]

    Gamow G 1928 Z. Phys. 51 204

    [6]

    Bohr N 1936 Usp. Fiz. Nauk 16 425

    [7]

    Weisskopf V F, Ewing D H 1940 Phys. Rev. 57 472

    [8]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366

    [9]

    Stokstad R G, Eisen Y, Kaplanis S, Pelte D, Smilansky U, Tserruya I 1980 Phys. Rev. C 21 2427

    [10]

    Tang X D, Li K A 2019 Phys. 48 633 (in Chinses) [唐晓东, 李阔昂, 2019 物理 48 633]

    [11]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547

    [12]

    Cameron A G W 2013 Stellar evolution, nuclear astrophysics, and nucleogenesis (Dover Publications), pp 5-10

    [13]

    Fowler W A 1984 Rev. Mod. Phys. 56 149

    [14]

    Liu W P, Zhang Y H, Guo B, Bai X X, He J J, Tang X D 2017 Nuclear Physics and Plasma Physics: Discipline Development Strategy(Nuclear Physics Volume) (Beijing: Science Press), pp 207-223. (in Chinese) [柳卫平,张玉虎,郭冰,白希祥,何建军,唐晓东 2017 核物理与等离子体物理:学科前 沿及发展战略(上册:核物理卷)第四章核天体物理第 207-223 页]

    [15]

    Matis H 2019 Nuclear Science—A Guide to the Nuclear Science Wall Chart (Contemporary Physics Education Project), pp 10-1-10-5

    [16]

    Jose J, Iliadis C 2011 Rep. Prog. Phys. 74 096901

    [17]

    Arnould M, Goriely S 2003 Phys. Rep. 384 1

    [18]

    Liu J J, Zhang Y H, Zhang F S 2025 At. Energy Sci. Technol. 59 265 (in Chinses) [刘佳佳, 张钰海, 张丰收 2025 原子能科学技术 59 265]

    [19]

    McMillan E, Abelson P H 1940 Phys. Rev. 57 1185

    [20]

    Seaborg G T, Mcmillan E M, Kennedy J W, Wahl A C 1946 Phys. Rev. 69 366

    [21]

    Seaborg G T 1994 The chemical and radioactive properties of the heavy elements (World Scientific), pp 20-23

    [22]

    Ghiorso A, James R A, Morgan L O, Seaborg G T 1950 Phys. Rev. 78 472

    [23]

    Thompson S G, Ghiorso A, Seaborg G T 1950 Phys. Rev. 77 838

    [24]

    Thompson S G, Street K, Ghiorso A, Seaborg G T 1950 Phys. Rev. 78 298

    [25]

    Ghiorso A, Thompson S G, Higgins G H, Seaborg G T, Studier M H, Fields P R, Fried S M, Diamond H, Mech J F, Pyle G L, Huizenga J R, Hirsch A, Manning W M, Browne C I, Smith H L, Spence R W 1955 Phys. Rev. 99 1048

    [26]

    Ghiorso A, Harvey B G, Choppin G R, Thompson S G, Seaborg G T 1955 Phys. Rev. 98 1518

    [27]

    Stokstad R G, Switkowski Z E, Dayras R A, Wieland R M 1976 Phys. Rev. Lett. 37 888

    [28]

    Hulke G, Rolfs C, Trautvetter H P 1980 Z. Phys. A: At. Nucl. 297 161

    [29]

    Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985 Phys. Rev. C 31 1980 30] Dasmahapatra B, Cujec B 1993 Nucl. Phys. A 565 657

    [30]

    An R, Jiang X, Tang N, Cao L G, Zhang F S 2024 Phys. Rev. C 109 064302

    [31]

    Lin C J 2018 Nuclear Reactions with Heavy Ions (Harbin: Harbin Engineering University Publishing), pp 134-168. (in Chinese) [林承键, 2018 重离子核反应 (哈尔滨工程大学出版社) 第 134-168 页]

    [32]

    Murakami T, Sahm C C, Vandenbosch R, Leach D D, Ray A, Murphy M J 1986 Phys. Rev. C 34 1353

    [33]

    Broglia R, Dasso C, Landowne S, Pollarolo G 1983 Phys. Lett. B 133 34

    [34]

    Timmers H, Leigh J, Dasgupta M, Hinde D, Lemmon R, Mein J, Morton C, Newton J, Rowley N 1995 Nucl. Phys. A 584 190

    [35]

    Morton C R, Berriman A C, Dasgupta M, Hinde D J, Newton J O, Hagino K, Thompson I J 1999 Phys. Rev. C 60 044608

    [36]

    Wei J X, Leigh J R, Hinde D J, Newton J O, Lemmon R C, Elfstrom S, Chen J X, Rowley N 1991 Phys. Rev. Lett. 67 3368

    [37]

    Leigh J R, Dasgupta M, Hinde D J, Mein J C, Morton C R, Lemmon R C, Lestone J P, Newton J O, Timmers H, Wei J X, Rowley N 1995 Phys. Rev. C 52 3151

    [38]

    Donets E D, Shchegolev V A, Ermakov V A 1966 Sov. At. Energy 20 257

    [39]

    Zager B A, Miller M B, Mikheev V L, Polikanov S M, Sukhov A M, Flerov G N, Chelnokov L P 1966 Sov. At. Energy 20 264

    [40]

    Donets E D, Shchegolev V A, Ermakov V A 1965 Sov. At. Energy 19 995

    [41]

    Eskola K, Eskola P, Nurmia M, Ghiorso A 1971 Phys. Rev. C 4 632

    [42]

    Ghiorso A, Nurmia M, Harris J, Eskola K, Eskola P 1969 Phys. Rev. Lett. 22 1317

    [43]

    Ghiorso A, Nurmia M, Eskola K, Harris J, Eskola P 1970 Phys. Rev. Lett. 24 1498

    [44]

    Ghiorso A, Nitschke J M, Alonso J R, Alonso C T, Nurmia M, Seaborg G T, Hulet E K, Lougheed R W 1974 Phys. Rev. Lett. 33 1490

    [45]

    Oganessian Y 2013 Nucl. Phys. News 23 15

    [46]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Kanungo R, Katori K, Koura H, et al. 2004 J. Phys. Soc. Jpn. 73 2593

    [47]

    Zhang M H, Zou Y, Wang M C, Zhang G, Niu Q L, Zhang F S 2024 Nucl. Sci. Tech. 35 161

    [48]

    Zhang F S, Li C, Zhu L, Wen P W 2018 Front. Phys. 13 132113

    [49]

    Zhang Y H, Zhang G, Li J J, Cheng W, Zhang F S 2022 J. Isot. 35 104 (in Chinses) [张钰海, 张根, 李静静, 程伟, 张丰收 2022 同位素 35 104]

    [50]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603

    [51]

    Hofmann S, Heinz S, Mann R, Maurer J, Munzenberg G, Antalic S, Barth W, Burkhard H, Dahl L, Eberhardt K, et al. 2016 Eur. Phys. J. A 52 180

    [52]

    Khuyagbaatar J, Yakushev A, Dullmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hubner A, Jager E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A K, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J B, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schadel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, ThorlePospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Turler A, Uusitalo J, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2020 Phys. Rev. C 102 064602

    [53]

    Tanaka M, Brionnet P, Du M, Ezold J, Felker K, Gall B J, Go S, Grzywacz R K, Haba H, Hagino K, Hogle S, Ishizawa S, Kaji D, Kimura S, King T, Komori Y, K Lemon R, G Leonard M, Morimoto K, Morita K, Nagae D, Naito N, Niwase T, C Rasco B, B Roberto J, P Rykaczewsk K, Sakaguchi S, Sakai H, Shigekawa Y, W Stracener D, VanCleve, Shelley, Wang Y, Washiyama K, Yokokita T 2022 J. Phys. Soc. Jpn. 91 084201

    [54]

    Oganessian Y T, Utyonkov V K, Abdullin F S, Dmitriev S N, Ibadullayev D, Itkis M G, Karpov A V, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Sagaidak R N, Saiko V V, Schlattauer L, Shubin V D, Shumeiko M V, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Sabelnikov A V, Abdusamadzoda D, Bodrov A Y, Voronyuk M G, Bozhikov G A, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B, Wang J G, Zhang M M, Huang X Y 2025 Phys. Rev. C 112 014603

    [55]

    Zagrebaev V 2019 Heavy Ion Reactions at Low Energies (Springer Nature), pp 105-145

    [56]

    Hill D L, Wheeler J A 1953 Phys. Rev. 89 1102

    [57]

    Zagrebaev V I, Aritomo Y, Itkis M G, Oganessian Y T, Ohta M 2001 Phys. Rev. C 65 014607

    [58]

    Siwek-Wilczynska K, Wilczynski J 2004 Phys. Rev. C 69 024611

    [59]

    Cap T, Siwek-Wilczynska K, Wilczynski J 2011 Phys. Rev. C 83 054602

    [60]

    Lu H, Marchix A, Abe Y, Boilley D 2016 Comput. Phys. Commun. 200 381

    [61]

    http://www.imqmd.com/fusion/EBD2a.html

    [62]

    Chuluunbaatar O, Gusev A, Vinitsky S, Abrashkevich A, Wen P, Lin C 2022 Comput. Phys. Commun. 278 108397

    [63]

    Hagino K, Rowley N, Kruppa A 1999 Comput. Phys. Commun. 123 143

    [64]

    https://www2.yukawa.kyoto-u.ac.jp/ kouichi.hagino/ccfull.html

    [65]

    Stefanini A M, Corradi L, Vinodkumar A M, Feng Y, Scarlassara F, Montagnoli G, Beghini S, Bisogno M 2000 Phys. Rev. C 62 014601

    [66]

    Baby L T, Tripathi V, Das J J, Sugathan P, Madhavan N, Sinha A K, Radhakrishna M C, Madhusudhana Rao P V, Hui S K, Hagino K 2000 Phys. Rev. C 62 014603

    [67]

    Wong C Y 1973 Phys. Rev. Lett. 31 766

    [68]

    Liu M, Wang N, Li Z X, Wu X Z, Zhao E G 2006 Nucl. Phys. A 768 80

    [69]

    Wang N, Chen J, Wang Y, Yao H 2025 Phys. Rev. C 111 024621

    [70]

    Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 At. Data Nucl. Data Tables 114 281

    [71]

    Itkis M G, Knyazheva G N, Itkis I M, Kozulin E M 2022 Eur. Phys. J. A 58 178

    [72]

    Swiatecki W 1981 Phys. Scr. 24 113

    [73]

    Bjørnholm S, Swiatecki W J 1982 Nucl. Phys. A 391 471

    [74]

    Blocki J, Feldmeier H, Swiatecki W 1986 Nucl. Phys. A 459 145

    [75]

    Aritomo Y, Wada T, Ohta M, Abe Y 1999 Phys. Rev. C 59 796

    [76]

    Zagrebaev V I 2001 Phys. Rev. C 64 034606

    [77]

    Shen C, Kosenko G, Abe Y 2002 Phys. Rev. C 66 061602

    [78]

    Shen C, Abe Y, Boilley D, Kosenko G, Zhao E 2008 Int. J. Mod. Phys. E 17 66

    [79]

    Shen C, Abe Y, Li Q, Boilley D 2009 Sci. China Ser. G 52 1458

    [80]

    Swiatecki W J, Siwek-Wilczynska K, Wilczynski J 2005 Phys. Rev. C 71 014602

    [81]

    Siwek-Wilczynska K, Cap T, Kowal M, Sobiczewski A, Wilczynski J 2012 Phys. Rev. C 86 014611

    [82]

    Cap T, Kowal M, Siwek-Wilczynska K 2022 Eur. Phys. J. A 58 231

    [83]

    Adamian G, Antonenko N, Jolos R, Palchikov Y V, Scheid W, Shneidman T 2004 Phys. At. Nucl. 67 1701

    [84]

    Zuo W, Li J Q, Zhao E G 2006 Nucl. Phys. Rev. 23 382 (in Chinses) [左维, 李君清, 赵恩广 2006 原 子核物理评论 23 382]

    [85]

    Feng Z Q, Jin G M, Li J Q, Scheid W 2007 Phys. Rev. C 76 044606

    [86]

    Wang N, Li J Q, Zhao E G 2008 Phys. Rev. C 78 054607

    [87]

    Yu L, Gan Z G, Huang M H, Zhang H F, Li J Q 2013 Nucl. Phys. Rev. 30 299

    [88]

    Yu L, Gan Z G, Zhang Z Y, Zhang H F, Li J Q 2014 Phys. Lett. B 730 105

    [89]

    Zhu L, Su J, Li C, Zhang F S 2022 Phys. Lett. B 829 137113

    [90]

    Zhu L, Su J 2021 Phys. Rev. C 104 044606

    [91]

    Zhang M H, Wang M C, Zou Y, Li J J, Zhang G, Zhang F S 2025 Phys. Rev. C 111 024611

    [92]

    Li J J, Li C, Zhang G, Zhu L, Liu Z, Zhang F S 2017 Phys. Rev. C 95 054612

    [93]

    Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622

    [94]

    Yang X X, Zhang G, Li J J, Li B, Zhang X R, Cheikh A T S, Cheng S H, Zhang Y H, Wang C, Zhang F S 2020 Nucl. Phys. Rev. 37 151 (in Chinses) [杨秀秀, 张根, 李静静, 李冰, 张欣蕊, A. T. Sokhna Cheikh,程诗慧, 张钰海, 王晨, 张丰收 2020 原子核物理评论 37 151]

    [95]

    Zhang M H, Zou Y, Wang M C, Niu Q L, Zhang G, Zhang F S 2025 Chin. Phys. C 49 054107

    [96]

    Zhang M H, Zhang Z Y, Gan Z G, Zhou S G, Zhang F S 2025 Nucl. Sci. Tech. 36 204

    [97]

    Zhang M H, Zhang Y H, Li J J, Tang N, Sun S, Zhang F S 2023 Nucl. Tech. 46 080014 (in Chinses) [张明昊, 张钰海, 李静静, 唐娜, 孙帅,张丰收 2023 核技术 46 080014]

    [98]

    Zhang M H, Zhang Y H, Zou Y, Yang X X, Zhang G, Zhang F S 2024 Nucl. Sci. Tech. 35 95

    [99]

    Li J J, Tang N, Zhang Y H, Zhang M H, Wang C, Zhang X R, Zhu L, Zhang F S 2023 Int. J. Mod. Phys. E 32 2330002

    [100]

    Fang Y P, Gao Z P, Zhang Y N, Liao Z H, Yang Y, Su J, Zhu L 2024 Phys. Lett. B 858 139069

    [101]

    Gao Z P, Liu S Y, Wen P W, Liao Z H, Yang Y, Su J, Wang Y J, Zhu L 2024 Phys. Rev. C 109 024601

    [102]

    Zou Y, Zhang Y H, Tang N, Li J J, Zhang F S 2023 At. Energy Sci. Technol. 57 762 (in Chinses) [邹盈, 张钰海, 唐娜, 李静静,张丰收 2023 原子能科学技术 57 762]

    [103]

    Chen L W, Ge L X, Zhang X D, Zhang F S 1997 J. Phys. G: Nucl. Part. Phys. 23 211

    [104]

    Chen L W, Zhang F S, Jin G M 1998 Phys. Rev. C 58 2283

    [105]

    Zhang Y H, Zhang G, Li J J, Liu Z, Yeremin A V, Zhang F S 2022 Phys. Rev. C 106 014625

    [106]

    Dirac P A M 1930 Note on exchange phenomena in the Thomas atom (Cambridge University Press), pp 376-385

    [107]

    Sekizawa K 2019 Front. Phys. 7 20

    [108]

    Ren Z X, Zhao P W, Meng J 2020 Phys. Lett. B 801 135194

    [109]

    Ren Z X, Zhao P W, Meng J 2020 Phys. Rev. C 102 044603

    [110]

    Bonche P, Grammaticos B, Koonin S 1978 Phys. Rev. C 17 1700

    [111]

    Umar A S, Strayer M R, Reinhard P G 1986 Phys. Rev. Lett. 56 2793

    [112]

    Godbey K, Umar A S, Simenel C 2022 Phys. Rev. C 106 L051602

    [113]

    Sun X X, Guo L 2023 Phys. Rev. C 107 064609

    [114]

    Yao H, Yang H, Wang N 2024 Phys. Rev. C 110 014602

    [115]

    Jiang X, Wang N, An R 2025 Phys. Rev. C 111 044604

    [116]

    Sahm C C, Clerc H G, Schmidt K H, Reisdorf W, Armbruster P, Heßberger F, Keller J, Munzenberg G, Vermeulen D 1984 Z. Phys. A: At. Nucl. 319 113

    [117]

    Schmidt K H, Morawek W 1991 Rep. Prog. Phys. 54 949

    [118]

    Boilley D, Lu H, Shen C, Abe Y, Giraud B G 2011 Phys. Rev. C 84 054608

    [119]

    Jiang C L, Esbensen H, Rehm K E, Back B B, Janssens R V F, Caggiano J A, Collon P, Greene J, Heinz A M, Henderson D J, Nishinaka I, Pennington T O, Seweryniak D 2002 Phys. Rev. Lett. 89 052701

    [120]

    Hagino K, Rowley N, Dasgupta M 2003 Phys. Rev. C 67 054603

    [121]

    Adamian G, Antonenko N, Scheid W 2000 Nucl. Phys. A 678 24

    [122]

    Smolanczuk R 2010 Phys. Rev. C 81 067602

    [123]

    Wang N, Tian J, Scheid W 2011 Phys. Rev. C 84 061601

    [124]

    Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Chernysheva E V, Krupa L, Hanappe F, Dorvaux O, Stuttge L, Trzaska W H, Schmitt C, Chubarian G 2014 Phys. Rev. C 90 054608

    [125]

    Zhu L, Xie W J, Zhang F S 2014 Phys. Rev. C 89 024615

    [126]

    Manjunatha H, Sowmya N, Munirathnam R, Sridhar K, Seenappa L, Damodara Gupta P 2023 Nucl. Phys. A 1032 122621

    [127]

    Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S 2012 Phys. Rev. C 86 034608

    [128]

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press), pp 312-349. (in Chinese) [卢希庭,江栋兴,叶沿林, 2000 原子核物理 (原子能出版社) 第 312-349 页]

    [129]

    Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59 185

    [130]

    Pei J C, Nazarewicz W, Sheikh J A, Kerman A K 2009 Phys. Rev. Lett. 102 192501

    [131]

    Qiao C Y, Pei J C 2022 Phys. Rev. C 106 014608

    [132]

    Yao H, Li C, Zhou H, Wang N 2024 Phys. Rev. C 109 034608

    [133]

    Chen Y, Yao H, Liu M, Tian J, Wen P, Wang N 2023 At. Data Nucl. Data Tables 154 101587

  • [1] 韩旭, 叶涛, 陈振鹏, 应阳君, 郭海瑞, 祖铁军. 基于R矩阵理论的氚氚反应截面数据评价.  , doi: 10.7498/aps.75.20251280
    [2] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究.  , doi: 10.7498/aps.70.20210742
    [3] 杨欢, 邢玲玲, 张穗萌, 吴兴举, 袁好. 屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响.  , doi: 10.7498/aps.62.183402
    [4] 屈卫卫, 张高龙, 乐小云. 利用双折叠模型对弹核为的熔合垒高度和位置的系统学分析.  , doi: 10.7498/aps.61.152501
    [5] 陈学文, 方祯云, 张家伟, 钟涛, 涂卫星. 标准模型中两类中性玻色子混合圈链图传播子的重整化及其e+e-→μ+μ-反应截面.  , doi: 10.7498/aps.60.021101
    [6] 高瑞军, 葛自明. 共面不对称条件下Ar原子(e, 2e)反应的三重微分截面.  , doi: 10.7498/aps.59.1702
    [7] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面.  , doi: 10.7498/aps.57.4817
    [8] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面.  , doi: 10.7498/aps.57.1569
    [9] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应.  , doi: 10.7498/aps.56.1339
    [10] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究.  , doi: 10.7498/aps.56.1347
    [11] 贾 飞, 徐瑚珊, 郑 川, 樊瑞睿, 张雪荧, 李君清, W. Scheid. 基于双核模型对超重元素合成机制的研究.  , doi: 10.7498/aps.56.2047
    [12] 李加兴, 郭忠言, 肖国青, 詹文龙, 王建松, 孙志宇, 王猛, 田文栋, 王武生, 毛瑞士, 王全进, 宁振江, 王建峰. 利用改进的Glauber模型对非奇异核核反应总截面数据的拟合.  , doi: 10.7498/aps.52.58
    [13] 杨少鹏, 傅广生, 李晓苇, 耿爱从, 韩 理. 立方体AgCl微晶中[Fe(CN)6]4-引入的浅电子陷阱阱深与俘获截面的动力学模拟.  , doi: 10.7498/aps.52.2649
    [14] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究.  , doi: 10.7498/aps.51.506
    [15] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量.  , doi: 10.7498/aps.50.644
    [16] 傅春寅, 鲁永令, 曾树荣. 自由多子尾区俘获动力学及多子俘获截面的测量.  , doi: 10.7498/aps.37.485
    [17] 王同生, 叶为文, 马忠乾. 在Ne22照射U238核反应中观察到反常截面的金同位素.  , doi: 10.7498/aps.22.708
    [18] 陈鹤琴. 高能反中微子在O16上的俘获截面.  , doi: 10.7498/aps.20.512
    [19] 杨澄中. 原子核反应和核结构.  , doi: 10.7498/aps.18.275
    [20] 王德焴, 丘锡钧, 赵玄, 李白文, 陈金全. 关于低能核反应中的复合核效应.  , doi: 10.7498/aps.18.227
计量
  • 文章访问数:  20
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-24

/

返回文章
返回
Baidu
map