-
熔合反应不仅为研究量子多体系统中的动态演化和耗散机制提供了关键信息,也为探索原子核反应动力学与结构特征开辟了重要途径.本文系统给出了从氢到钔不同质量区元素的合成路径,以及从轻体系到重体系的各类重离子熔合反应的实验进展.评述了现有理论模型在描述俘获过程中的优越性与局限性,重点分析了唯象模型与微观动力学模型对不同反应体系熔合行为的优势与不足.在此基础上,进一步凝炼出熔合反应研究中的若干关键科学问题,包括重离子熔合阻碍、极深垒下熔合抑制、熔合几率PCN以及复合核的裂变势垒等,并对未来熔合反应的研究方向提出了展望与建议.本文数据集可在科学数据银行数据库https://doi.org/10.57760/sciencedb.j00213.00238中访问获取.Fusion reactions not only provide key information for studying the dynamic evolution and dissipation mechanisms in quantum many-body systems, but also open up an important avenue for exploring the reaction dynamics and structural characteristics of atomic nuclei. In recent years, with the continuous development of the technology for synthesizing new elements and their isotopes via fusion reactions, a series of new elements and their isotopes have been successfully synthesized. This paper systematically summarizes the synthesis pathways of elements in different mass regions, ranging from hydrogen to mendelevium, as well as the experimental progress of various heavy-ion fusion reactions from light systems to heavy systems. It reviews the advantages and limitations of current theoretical models in describing the capture process, and focuses on analyzing the strengths and shortcomings of phenomenological models and microscopic dynamic models in explaining the fusion behavior of different reaction systems. For the capture cross sections in light nuclei-light nuclei reaction systems, the EBD method, the CCFULL model, the universal Wong formula, and the ImQMD model all demonstrate good agreement with the experimental data. For the systems involving light nuclei-medium mass nuclei and light nuclei-heavy nuclei, the mentioned above models provide satisfactory descriptions. In particular, for the 16O+144Sm reaction system, the results obtained from the CCFULL model show good agreement with experimental data across both the sub-barrier and above-barrier energy regions. For the heavy nuclei-heavy nuclei systems, however, the EBD method holds a distinct advantage. Therefore, in subsequent predictions of the evaporation residue cross sections for superheavy elements, the results calculated by the EBD method can serve as the input for the capture cross section. On this basis, several key scientific issues in fusion reaction research are proposed, including heavy-ion fusion hindrance, the phenomenon of fusion suppression at extreme sub-barrier energies, fusion probability PCN, and the fission barrier of compound nuclei, etc. Furthermore, an outlook and suggestions for future research directions in fusion reactions are provided.
-
Keywords:
- fusion reaction /
- nuclear reaction model /
- capture cross section /
- evaporation residue cross section
-
[1] Ma Y G 2020 Recent Progress in Nuclear Physics (Shanghai: Shanghai Jiao Tong University Press), pp 245-304. (in Chinese) [马余刚, 2020 原子核物理新进展 (上海交通大学出版社) 第 245-304 页]
[2] Zhang F S, Ge L X 1998 Nuclear Multifragmentation (Beijing: Science Press), pp 268-274. (in Chinese) [张丰收, 葛凌霄 1998 原子核多重碎裂 (科学出版社) 第 268-274 页]
[3] Zhang F S, Zhang Y H, Zhang M H, Tang N, Cheng S H, Li J J, Cheng W 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 392 (in Chinses) [张丰收, 张钰海, 张明昊, 唐娜, 程诗慧,李静静,程伟 2022 北京师范大学学报 (自然科学版) 58 392]
[4] Thoennessen M 2016 The discovery of isotopes (Springer International Publishing Switzerland), pp 23-35
[5] Gamow G 1928 Z. Phys. 51 204
[6] Bohr N 1936 Usp. Fiz. Nauk 16 425
[7] Weisskopf V F, Ewing D H 1940 Phys. Rev. 57 472
[8] Hauser W, Feshbach H 1952 Phys. Rev. 87 366
[9] Stokstad R G, Eisen Y, Kaplanis S, Pelte D, Smilansky U, Tserruya I 1980 Phys. Rev. C 21 2427
[10] Tang X D, Li K A 2019 Phys. 48 633 (in Chinses) [唐晓东, 李阔昂, 2019 物理 48 633]
[11] Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547
[12] Cameron A G W 2013 Stellar evolution, nuclear astrophysics, and nucleogenesis (Dover Publications), pp 5-10
[13] Fowler W A 1984 Rev. Mod. Phys. 56 149
[14] Liu W P, Zhang Y H, Guo B, Bai X X, He J J, Tang X D 2017 Nuclear Physics and Plasma Physics: Discipline Development Strategy(Nuclear Physics Volume) (Beijing: Science Press), pp 207-223. (in Chinese) [柳卫平,张玉虎,郭冰,白希祥,何建军,唐晓东 2017 核物理与等离子体物理:学科前 沿及发展战略(上册:核物理卷)第四章核天体物理第 207-223 页]
[15] Matis H 2019 Nuclear Science—A Guide to the Nuclear Science Wall Chart (Contemporary Physics Education Project), pp 10-1-10-5
[16] Jose J, Iliadis C 2011 Rep. Prog. Phys. 74 096901
[17] Arnould M, Goriely S 2003 Phys. Rep. 384 1
[18] Liu J J, Zhang Y H, Zhang F S 2025 At. Energy Sci. Technol. 59 265 (in Chinses) [刘佳佳, 张钰海, 张丰收 2025 原子能科学技术 59 265]
[19] McMillan E, Abelson P H 1940 Phys. Rev. 57 1185
[20] Seaborg G T, Mcmillan E M, Kennedy J W, Wahl A C 1946 Phys. Rev. 69 366
[21] Seaborg G T 1994 The chemical and radioactive properties of the heavy elements (World Scientific), pp 20-23
[22] Ghiorso A, James R A, Morgan L O, Seaborg G T 1950 Phys. Rev. 78 472
[23] Thompson S G, Ghiorso A, Seaborg G T 1950 Phys. Rev. 77 838
[24] Thompson S G, Street K, Ghiorso A, Seaborg G T 1950 Phys. Rev. 78 298
[25] Ghiorso A, Thompson S G, Higgins G H, Seaborg G T, Studier M H, Fields P R, Fried S M, Diamond H, Mech J F, Pyle G L, Huizenga J R, Hirsch A, Manning W M, Browne C I, Smith H L, Spence R W 1955 Phys. Rev. 99 1048
[26] Ghiorso A, Harvey B G, Choppin G R, Thompson S G, Seaborg G T 1955 Phys. Rev. 98 1518
[27] Stokstad R G, Switkowski Z E, Dayras R A, Wieland R M 1976 Phys. Rev. Lett. 37 888
[28] Hulke G, Rolfs C, Trautvetter H P 1980 Z. Phys. A: At. Nucl. 297 161
[29] Thomas J, Chen Y T, Hinds S, Langanke K, Meredith D, Olson M, Barnes C A 1985 Phys. Rev. C 31 1980 30] Dasmahapatra B, Cujec B 1993 Nucl. Phys. A 565 657
[30] An R, Jiang X, Tang N, Cao L G, Zhang F S 2024 Phys. Rev. C 109 064302
[31] Lin C J 2018 Nuclear Reactions with Heavy Ions (Harbin: Harbin Engineering University Publishing), pp 134-168. (in Chinese) [林承键, 2018 重离子核反应 (哈尔滨工程大学出版社) 第 134-168 页]
[32] Murakami T, Sahm C C, Vandenbosch R, Leach D D, Ray A, Murphy M J 1986 Phys. Rev. C 34 1353
[33] Broglia R, Dasso C, Landowne S, Pollarolo G 1983 Phys. Lett. B 133 34
[34] Timmers H, Leigh J, Dasgupta M, Hinde D, Lemmon R, Mein J, Morton C, Newton J, Rowley N 1995 Nucl. Phys. A 584 190
[35] Morton C R, Berriman A C, Dasgupta M, Hinde D J, Newton J O, Hagino K, Thompson I J 1999 Phys. Rev. C 60 044608
[36] Wei J X, Leigh J R, Hinde D J, Newton J O, Lemmon R C, Elfstrom S, Chen J X, Rowley N 1991 Phys. Rev. Lett. 67 3368
[37] Leigh J R, Dasgupta M, Hinde D J, Mein J C, Morton C R, Lemmon R C, Lestone J P, Newton J O, Timmers H, Wei J X, Rowley N 1995 Phys. Rev. C 52 3151
[38] Donets E D, Shchegolev V A, Ermakov V A 1966 Sov. At. Energy 20 257
[39] Zager B A, Miller M B, Mikheev V L, Polikanov S M, Sukhov A M, Flerov G N, Chelnokov L P 1966 Sov. At. Energy 20 264
[40] Donets E D, Shchegolev V A, Ermakov V A 1965 Sov. At. Energy 19 995
[41] Eskola K, Eskola P, Nurmia M, Ghiorso A 1971 Phys. Rev. C 4 632
[42] Ghiorso A, Nurmia M, Harris J, Eskola K, Eskola P 1969 Phys. Rev. Lett. 22 1317
[43] Ghiorso A, Nurmia M, Eskola K, Harris J, Eskola P 1970 Phys. Rev. Lett. 24 1498
[44] Ghiorso A, Nitschke J M, Alonso J R, Alonso C T, Nurmia M, Seaborg G T, Hulet E K, Lougheed R W 1974 Phys. Rev. Lett. 33 1490
[45] Oganessian Y 2013 Nucl. Phys. News 23 15
[46] Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Kanungo R, Katori K, Koura H, et al. 2004 J. Phys. Soc. Jpn. 73 2593
[47] Zhang M H, Zou Y, Wang M C, Zhang G, Niu Q L, Zhang F S 2024 Nucl. Sci. Tech. 35 161
[48] Zhang F S, Li C, Zhu L, Wen P W 2018 Front. Phys. 13 132113
[49] Zhang Y H, Zhang G, Li J J, Cheng W, Zhang F S 2022 J. Isot. 35 104 (in Chinses) [张钰海, 张根, 李静静, 程伟, 张丰收 2022 同位素 35 104]
[50] Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603
[51] Hofmann S, Heinz S, Mann R, Maurer J, Munzenberg G, Antalic S, Barth W, Burkhard H, Dahl L, Eberhardt K, et al. 2016 Eur. Phys. J. A 52 180
[52] Khuyagbaatar J, Yakushev A, Dullmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hubner A, Jager E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A K, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J B, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schadel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, ThorlePospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Turler A, Uusitalo J, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2020 Phys. Rev. C 102 064602
[53] Tanaka M, Brionnet P, Du M, Ezold J, Felker K, Gall B J, Go S, Grzywacz R K, Haba H, Hagino K, Hogle S, Ishizawa S, Kaji D, Kimura S, King T, Komori Y, K Lemon R, G Leonard M, Morimoto K, Morita K, Nagae D, Naito N, Niwase T, C Rasco B, B Roberto J, P Rykaczewsk K, Sakaguchi S, Sakai H, Shigekawa Y, W Stracener D, VanCleve, Shelley, Wang Y, Washiyama K, Yokokita T 2022 J. Phys. Soc. Jpn. 91 084201
[54] Oganessian Y T, Utyonkov V K, Abdullin F S, Dmitriev S N, Ibadullayev D, Itkis M G, Karpov A V, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Sagaidak R N, Saiko V V, Schlattauer L, Shubin V D, Shumeiko M V, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Sabelnikov A V, Abdusamadzoda D, Bodrov A Y, Voronyuk M G, Bozhikov G A, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B, Wang J G, Zhang M M, Huang X Y 2025 Phys. Rev. C 112 014603
[55] Zagrebaev V 2019 Heavy Ion Reactions at Low Energies (Springer Nature), pp 105-145
[56] Hill D L, Wheeler J A 1953 Phys. Rev. 89 1102
[57] Zagrebaev V I, Aritomo Y, Itkis M G, Oganessian Y T, Ohta M 2001 Phys. Rev. C 65 014607
[58] Siwek-Wilczynska K, Wilczynski J 2004 Phys. Rev. C 69 024611
[59] Cap T, Siwek-Wilczynska K, Wilczynski J 2011 Phys. Rev. C 83 054602
[60] Lu H, Marchix A, Abe Y, Boilley D 2016 Comput. Phys. Commun. 200 381
[61] http://www.imqmd.com/fusion/EBD2a.html
[62] Chuluunbaatar O, Gusev A, Vinitsky S, Abrashkevich A, Wen P, Lin C 2022 Comput. Phys. Commun. 278 108397
[63] Hagino K, Rowley N, Kruppa A 1999 Comput. Phys. Commun. 123 143
[64] https://www2.yukawa.kyoto-u.ac.jp/ kouichi.hagino/ccfull.html
[65] Stefanini A M, Corradi L, Vinodkumar A M, Feng Y, Scarlassara F, Montagnoli G, Beghini S, Bisogno M 2000 Phys. Rev. C 62 014601
[66] Baby L T, Tripathi V, Das J J, Sugathan P, Madhavan N, Sinha A K, Radhakrishna M C, Madhusudhana Rao P V, Hui S K, Hagino K 2000 Phys. Rev. C 62 014603
[67] Wong C Y 1973 Phys. Rev. Lett. 31 766
[68] Liu M, Wang N, Li Z X, Wu X Z, Zhao E G 2006 Nucl. Phys. A 768 80
[69] Wang N, Chen J, Wang Y, Yao H 2025 Phys. Rev. C 111 024621
[70] Wang B, Wen K, Zhao W J, Zhao E G, Zhou S G 2017 At. Data Nucl. Data Tables 114 281
[71] Itkis M G, Knyazheva G N, Itkis I M, Kozulin E M 2022 Eur. Phys. J. A 58 178
[72] Swiatecki W 1981 Phys. Scr. 24 113
[73] Bjørnholm S, Swiatecki W J 1982 Nucl. Phys. A 391 471
[74] Blocki J, Feldmeier H, Swiatecki W 1986 Nucl. Phys. A 459 145
[75] Aritomo Y, Wada T, Ohta M, Abe Y 1999 Phys. Rev. C 59 796
[76] Zagrebaev V I 2001 Phys. Rev. C 64 034606
[77] Shen C, Kosenko G, Abe Y 2002 Phys. Rev. C 66 061602
[78] Shen C, Abe Y, Boilley D, Kosenko G, Zhao E 2008 Int. J. Mod. Phys. E 17 66
[79] Shen C, Abe Y, Li Q, Boilley D 2009 Sci. China Ser. G 52 1458
[80] Swiatecki W J, Siwek-Wilczynska K, Wilczynski J 2005 Phys. Rev. C 71 014602
[81] Siwek-Wilczynska K, Cap T, Kowal M, Sobiczewski A, Wilczynski J 2012 Phys. Rev. C 86 014611
[82] Cap T, Kowal M, Siwek-Wilczynska K 2022 Eur. Phys. J. A 58 231
[83] Adamian G, Antonenko N, Jolos R, Palchikov Y V, Scheid W, Shneidman T 2004 Phys. At. Nucl. 67 1701
[84] Zuo W, Li J Q, Zhao E G 2006 Nucl. Phys. Rev. 23 382 (in Chinses) [左维, 李君清, 赵恩广 2006 原 子核物理评论 23 382]
[85] Feng Z Q, Jin G M, Li J Q, Scheid W 2007 Phys. Rev. C 76 044606
[86] Wang N, Li J Q, Zhao E G 2008 Phys. Rev. C 78 054607
[87] Yu L, Gan Z G, Huang M H, Zhang H F, Li J Q 2013 Nucl. Phys. Rev. 30 299
[88] Yu L, Gan Z G, Zhang Z Y, Zhang H F, Li J Q 2014 Phys. Lett. B 730 105
[89] Zhu L, Su J, Li C, Zhang F S 2022 Phys. Lett. B 829 137113
[90] Zhu L, Su J 2021 Phys. Rev. C 104 044606
[91] Zhang M H, Wang M C, Zou Y, Li J J, Zhang G, Zhang F S 2025 Phys. Rev. C 111 024611
[92] Li J J, Li C, Zhang G, Zhu L, Liu Z, Zhang F S 2017 Phys. Rev. C 95 054612
[93] Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622
[94] Yang X X, Zhang G, Li J J, Li B, Zhang X R, Cheikh A T S, Cheng S H, Zhang Y H, Wang C, Zhang F S 2020 Nucl. Phys. Rev. 37 151 (in Chinses) [杨秀秀, 张根, 李静静, 李冰, 张欣蕊, A. T. Sokhna Cheikh,程诗慧, 张钰海, 王晨, 张丰收 2020 原子核物理评论 37 151]
[95] Zhang M H, Zou Y, Wang M C, Niu Q L, Zhang G, Zhang F S 2025 Chin. Phys. C 49 054107
[96] Zhang M H, Zhang Z Y, Gan Z G, Zhou S G, Zhang F S 2025 Nucl. Sci. Tech. 36 204
[97] Zhang M H, Zhang Y H, Li J J, Tang N, Sun S, Zhang F S 2023 Nucl. Tech. 46 080014 (in Chinses) [张明昊, 张钰海, 李静静, 唐娜, 孙帅,张丰收 2023 核技术 46 080014]
[98] Zhang M H, Zhang Y H, Zou Y, Yang X X, Zhang G, Zhang F S 2024 Nucl. Sci. Tech. 35 95
[99] Li J J, Tang N, Zhang Y H, Zhang M H, Wang C, Zhang X R, Zhu L, Zhang F S 2023 Int. J. Mod. Phys. E 32 2330002
[100] Fang Y P, Gao Z P, Zhang Y N, Liao Z H, Yang Y, Su J, Zhu L 2024 Phys. Lett. B 858 139069
[101] Gao Z P, Liu S Y, Wen P W, Liao Z H, Yang Y, Su J, Wang Y J, Zhu L 2024 Phys. Rev. C 109 024601
[102] Zou Y, Zhang Y H, Tang N, Li J J, Zhang F S 2023 At. Energy Sci. Technol. 57 762 (in Chinses) [邹盈, 张钰海, 唐娜, 李静静,张丰收 2023 原子能科学技术 57 762]
[103] Chen L W, Ge L X, Zhang X D, Zhang F S 1997 J. Phys. G: Nucl. Part. Phys. 23 211
[104] Chen L W, Zhang F S, Jin G M 1998 Phys. Rev. C 58 2283
[105] Zhang Y H, Zhang G, Li J J, Liu Z, Yeremin A V, Zhang F S 2022 Phys. Rev. C 106 014625
[106] Dirac P A M 1930 Note on exchange phenomena in the Thomas atom (Cambridge University Press), pp 376-385
[107] Sekizawa K 2019 Front. Phys. 7 20
[108] Ren Z X, Zhao P W, Meng J 2020 Phys. Lett. B 801 135194
[109] Ren Z X, Zhao P W, Meng J 2020 Phys. Rev. C 102 044603
[110] Bonche P, Grammaticos B, Koonin S 1978 Phys. Rev. C 17 1700
[111] Umar A S, Strayer M R, Reinhard P G 1986 Phys. Rev. Lett. 56 2793
[112] Godbey K, Umar A S, Simenel C 2022 Phys. Rev. C 106 L051602
[113] Sun X X, Guo L 2023 Phys. Rev. C 107 064609
[114] Yao H, Yang H, Wang N 2024 Phys. Rev. C 110 014602
[115] Jiang X, Wang N, An R 2025 Phys. Rev. C 111 044604
[116] Sahm C C, Clerc H G, Schmidt K H, Reisdorf W, Armbruster P, Heßberger F, Keller J, Munzenberg G, Vermeulen D 1984 Z. Phys. A: At. Nucl. 319 113
[117] Schmidt K H, Morawek W 1991 Rep. Prog. Phys. 54 949
[118] Boilley D, Lu H, Shen C, Abe Y, Giraud B G 2011 Phys. Rev. C 84 054608
[119] Jiang C L, Esbensen H, Rehm K E, Back B B, Janssens R V F, Caggiano J A, Collon P, Greene J, Heinz A M, Henderson D J, Nishinaka I, Pennington T O, Seweryniak D 2002 Phys. Rev. Lett. 89 052701
[120] Hagino K, Rowley N, Dasgupta M 2003 Phys. Rev. C 67 054603
[121] Adamian G, Antonenko N, Scheid W 2000 Nucl. Phys. A 678 24
[122] Smolanczuk R 2010 Phys. Rev. C 81 067602
[123] Wang N, Tian J, Scheid W 2011 Phys. Rev. C 84 061601
[124] Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Chernysheva E V, Krupa L, Hanappe F, Dorvaux O, Stuttge L, Trzaska W H, Schmitt C, Chubarian G 2014 Phys. Rev. C 90 054608
[125] Zhu L, Xie W J, Zhang F S 2014 Phys. Rev. C 89 024615
[126] Manjunatha H, Sowmya N, Munirathnam R, Sridhar K, Seenappa L, Damodara Gupta P 2023 Nucl. Phys. A 1032 122621
[127] Nishio K, Mitsuoka S, Nishinaka I, Makii H, Wakabayashi Y, Ikezoe H, Hirose K, Ohtsuki T, Aritomo Y, Hofmann S 2012 Phys. Rev. C 86 034608
[128] Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press), pp 312-349. (in Chinese) [卢希庭,江栋兴,叶沿林, 2000 原子核物理 (原子能出版社) 第 312-349 页]
[129] Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59 185
[130] Pei J C, Nazarewicz W, Sheikh J A, Kerman A K 2009 Phys. Rev. Lett. 102 192501
[131] Qiao C Y, Pei J C 2022 Phys. Rev. C 106 014608
[132] Yao H, Li C, Zhou H, Wang N 2024 Phys. Rev. C 109 034608
[133] Chen Y, Yao H, Liu M, Tian J, Wen P, Wang N 2023 At. Data Nucl. Data Tables 154 101587
计量
- 文章访问数: 20
- PDF下载量: 2
- 被引次数: 0








下载: