搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过界面功函数工程增强Al2Te3/In2Se3铁电隧道结中的隧穿电阻效应

和志坚 欧云 邹代峰 刘运牙

引用本文:
Citation:

通过界面功函数工程增强Al2Te3/In2Se3铁电隧道结中的隧穿电阻效应

和志坚, 欧云, 邹代峰, 刘运牙

Enhanced tunneling electroresistance through interfacial work function engineering in Al2Te3/In2Se3 ferroelectric tunnel junctions

HE Zhijian, OU Yun, ZOU Daifeng, LIU Yunya
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 实现对量子隧穿电阻的精确调控, 是铁电隧道结技术迈向应用的核心瓶颈. 本研究提出了一种基于界面功函数工程的策略, 其核心在于利用铁电极化翻转, 主动调控异质结界面的能带对齐, 从而在势垒层中诱导出可逆的金属-绝缘体相变, 实现对隧穿电阻的调控. 以Al2Te3/In2Se3范德瓦耳斯异质结为研究对象, 通过第一性原理计算证明, 对界面功函数的策略性调控可在势垒层中诱导出可逆的金属-绝缘体转变, 从而显著地改变其隧穿电阻. 非平衡输运模拟进一步显示, 该结构实现了高达2.69×105%的隧穿电阻比值. 研究结果不仅凸显了Al2Te3/In2Se3作为高性能铁电隧道结的潜力, 也为在低维铁电存储器件中设计超高隧穿电阻效应确定了一种普适的设计策略. 这项工作为开发多状态非易失性存储器提供了新的思路.
    In recent years, two-dimensional (2D) ferroelectric materials have attracted widespread interest due to their ultrathin geometry, high stability, and switchable polarization states. Ferroelectric tunnel junctions (FTJs) made from 2D ferroelectric materials exhibit exceptionally high tunnel electroresistance (TER) ratios, making them leading candidates for next-generation non-volatile memory and logic devices. However, advancing FTJ technology depends on overcoming the critical challenge of precisely controlling quantum tunneling resistance. Therefore, this study proposes a strategy of interfacial work function engineering, which actively modulates the band alignment of a heterostructure through ferroelectric polarization switching, induces a reversible metal-insulator transition in the barrier layer, and modulates TER. Using a van der Waals heterostructure composed of Al2Te3/In2Se3 as a model system, we demonstrate through first-principles calculations that the strategic manipulation of interfacial work functions can induce a reversible metal-insulator transition in the barrier, thereby drastically changing the tunneling conductance. Further analysis indicates that a work function mismatch between the two ferroelectric materials causes varying degrees of interfacial charge transfer, thereby triggering a metal-insulator transition in the van der Waals ferroelectric heterostructure as the external electric field is reversed. Non-equilibrium transport simulations reveal an unprecedented TER ratio of 2.69×105%. Our findings not only highlight Al2Te3/In2Se3 as a promising platform for high-performance FTJs but also establish a universal design strategy for engineering ultrahigh TER effects in low-dimensional ferroelectric memory devices. This work opens new avenues for developing energy-efficient, non-volatile memory with enhanced scalability and switching characteristics.
  • 图 1  (a) Al2Te3/In2Se3异质结的四种堆叠方式的结构示意图; (b) 异质结从${P}_{\downarrow \downarrow } $到${P}_{\uparrow \uparrow } $的翻转路径. 异质结不同极化态的能带结构 (c) ${P}_{\downarrow \downarrow }$; (d) ${P}_{\uparrow \downarrow } $; (e) ${P}_{\downarrow \uparrow } $; (f) ${P}_{\uparrow \uparrow } $

    Fig. 1.  (a) Schematic representation of the four possible stacking states for Al2Te3/In2Se3 heterostructure. (b) The transition pathway between ${P}_{\downarrow \downarrow } $ and ${P}_{\uparrow \uparrow } $. The layer-projected band structures for the state: (c) ${P}_{\downarrow \downarrow } $, (d) ${P}_{\uparrow \downarrow } $, (e) ${P}_{\downarrow \uparrow } $, and (f) ${P}_{\uparrow \uparrow } $.

    图 2  (a) Al2Te3和(b) In2Se3的能带结构

    Fig. 2.  The band structures of (a) Al2Te3 and (b) In2Se3.

    图 3  (a) ${P}_{\downarrow \downarrow } $极化态和(b) ${P}_{\uparrow \uparrow } $极化态下Al2Te3/In2Se3异质结沿z方向的平面平均电荷密度差; (c) In2Se3和(d) Al2Te3的静电势; (e) 异质结界面接触电势差形成机理示意图; (f) 两种半导体在接触前(达到平衡前)的能带对齐示意图; (g) ${P}_{\downarrow \downarrow } $极化态和(h) ${P}_{\uparrow \uparrow } $极化态下Al2Te3/In2Se3异质结中Al2Te3和In2Se3单层的功函数

    Fig. 3.  The differential charge density diagrams along the z direction of Al2Te3/In2Se3 heterostructures with (a) ${P}_{\downarrow \downarrow } $ and (b) ${P}_{\uparrow \uparrow } $ states; plane-averaged electrostatic potential of (c) In2Se3 and (d) Al2Te3; (e) schematic diagram of the formation of contact potential and (f) band alignment between two different materials for two-dimensional van der Waals heterostructure; the work functions of Al2Te3 and In2Se3 in the (g) ${P}_{\downarrow \downarrow } $ state and the (h) ${P}_{\uparrow \uparrow } $ state for Al2Te3/In2Se3 heterostructures.

    图 4  (a) Al2(Te0.5Sb0.5)3和(b) In2(Se0.5As0.5)3的能带结构; (c) ${P}_{\downarrow \downarrow } $极化态和(d) ${P}_{\uparrow \uparrow } $极化态下Al2(Te0.5Sb0.5)3/In2(Se0.5As0.5)3的能带结构

    Fig. 4.  The band structures of (a) Al2(Te0.5Sb0.5)3, (b) In2(Se0.5As0.5)3; the (c) ${P}_{\downarrow \downarrow } $ and (d) ${P}_{\uparrow \uparrow } $ state of Al2(Te0.5Sb0.5)3/In2(Se0.5As0.5)3 of.

    图 5  (a) ${P}_{\downarrow \downarrow } $极化态和(b) ${P}_{\uparrow \uparrow } $极化态下基于Al2Te3/In2Se3异质结的场效应晶体管的原子结构侧视图; (c) Al2Te3/In2Se3隧道结透射函数; 在费米能级处, (d) ${P}_{\downarrow \downarrow } $极化态和(e) ${P}_{\uparrow \uparrow } $极化态下基于Al2Te3/In2Se3异质结的场效应晶体管的散射态; 铁电隧道结原型器件结构 (f) “ON”态和(g) “OFF”态

    Fig. 5.  The side views of atomic structures of Al2Te3/In2Se3-based FTJs with N=7 for the (a) ${P}_{\downarrow \downarrow } $ and (b) ${P}_{\uparrow \uparrow } $ states. (c) The transmission function of the FTJs in ${P}_{\downarrow \downarrow } $ and ${P}_{\uparrow \uparrow } $ states as a function of energy. The scattering states at Fermi level for Al2Te3/In2Se3-based FTJs when N=7 for the (d) ${P}_{\downarrow \downarrow } $ and (e) ${P}_{\uparrow \uparrow } $ states. The (f) “ON” state and (g) “OFF” state of the device prototype for FTJs applications.

    图 6  (a) $ {P}_{\downarrow \downarrow }$极化态和(b) ${P}_{\uparrow \uparrow } $极化态下基于PdTe2/Al2Te3/In2Se3/PtTe2的隧道结结构; (c) Al2Te3/In2Se3隧道结透射函数

    Fig. 6.  The atomic structures of PdTe2/Al2Te3/In2Se3/PtTe2-based FTJs for the (a) ${P}_{\downarrow \downarrow } $ and (b) ${P}_{\uparrow \uparrow } $ states; (c) the transmission function of the FTJs in ${P}_{\downarrow \downarrow } $ and ${P}_{\uparrow \uparrow } $ states as a function of energy.

    图 7  (a) ${P}_{\downarrow \downarrow } $极化态和(b) ${P}_{\uparrow \uparrow } $极化态下基于Heyd-Scuseria-Ernzerhof(HSE06)杂化泛函计算获得的Al2Te3/In2Se3异质结的能带结构

    Fig. 7.  The band structures of Al2Te3/In2Se3 heterostructure with HSE06 functional for the (a) ${P}_{\downarrow \downarrow } $ and (b) ${P}_{\uparrow \uparrow } $ state.

    表 1  不同构型Al2Te3/In2Se3异质结的形成能

    Table 1.  Formation energy of Al2Te3/In2Se3 heterostructures with different configurations.

    ${P}_{\downarrow \downarrow } $ ${P}_{\uparrow \downarrow } $ ${P}_{\downarrow \uparrow } $ ${P}_{\uparrow \uparrow } $
    构型1(Te-In堆垛) –37.389 eV –37.352 eV –37.353 eV –37.358 eV
    构型2(Te-Se堆垛) –37.378 eV –37.347 eV –37.352 eV –37.353 eV
    下载: 导出CSV
    Baidu
  • [1]

    Luo K F, Ma Z, Sando D, Zhang Q, Valanoor N 2025 ACS Nano 19 6622Google Scholar

    [2]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181Google Scholar

    [3]

    Zheng N, Li J, Sun H, Zang Y, Jiao P, Shen C, Jiang X, Xia Y, Deng Y, Wu D, Pan X, Nie Y 2025 Sci. Adv. 11 eads0724Google Scholar

    [4]

    Bai X, Zou D, Lei C, He Z, Liu Y 2025 Appl. Phys. Lett. 126 162902Google Scholar

    [5]

    Berdan R, Marukame T, Ota K, Yamaguchi M, Saitoh M, Fujii S, Deguchi J, Nishi Y 2020 Nat. Electron. 3 259Google Scholar

    [6]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar

    [7]

    Yu X, Zhang X, Ma L, Wang J 2024 Adv. Funct. Mater. 34 2409281Google Scholar

    [8]

    Kim D J, Lu H, Ryu S, Bark C W, Eom C B, Tsymbal E Y, Gruverman A 2012 Nano Lett. 12 5697Google Scholar

    [9]

    Li Y, Yang Y, Zhao H, Duan H, Yang C, Min T, Li T 2025 Nano Lett. 25 1680Google Scholar

    [10]

    Junquera J, Ghosez P 2003 Nature 422 506Google Scholar

    [11]

    Yang Q, Tao L, Zhang Y, Li M, Jiang Z, Tsymbal E Y, Alexandrov V 2019 Nano Lett. 19 7385Google Scholar

    [12]

    Jia Y, Yang Q, Fang Y W, Lu Y, Xie M, Wei J, Tian J, Zhang L, Yang R 2024 Nat. Commun. 15 693Google Scholar

    [13]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [14]

    Qi J, Han H, Yang S, Kang L, Yin H, Zhao G 2024 Appl. Phys. Lett. 125 042903Google Scholar

    [15]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [16]

    Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W X, Fuhrer M S 2018 Sci. Adv. 4 eaar7720Google Scholar

    [17]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588Google Scholar

    [18]

    Popov I, Seifert G, Tománek D 2012 Phys. Rev. Lett. 108 156802Google Scholar

    [19]

    Liu Z, Hou P, Sun L, Tsymbal E Y, Jiang J, Yang Q 2023 npj Comput. Mater. 9 6Google Scholar

    [20]

    Xie A, Hao H, Liu C S, Zheng X, Zhang L, Zeng Z 2023 Phys. Rev. B 107 115427Google Scholar

    [21]

    李景辉, 曹胜果, 韩佳凝, 李占海, 张振华 2024 73 137102Google Scholar

    Li J H, Cao S G, Han J N, Li Z H, Zhang Z H 2024 Acta Phys. Sin. 73 137102Google Scholar

    [22]

    李永宁, 谢逸群, 王音 2021 70 227701Google Scholar

    Li Y N, Xie Y Q, Wang Y 2021 Acta Phys. Sin. 70 227701Google Scholar

    [23]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [28]

    Vydrov O A, Heyd J, Krukau A V, Scuseria G E 2006 J. Chem. Phys. 125 074106Google Scholar

    [29]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Soni R, Petraru A, Meuffels P, Vavra O, Ziegler M, Kim S K, Jeong D S, Pertsev N A, Kohlstedt H 2014 Nat. Commun. 5 5414Google Scholar

    [32]

    Chen Y, Guo J T, Li M X, Wang G Z, Yuan H K, Chen H 2024 Surf. Interfaces 51 104597Google Scholar

    [33]

    Fu C-F, Sun J, Luo Q, Li X, Hu W, Yang J 2018 Nano Lett. 18 6312Google Scholar

    [34]

    Fan A, Zhang Q, Yang Z, Li L, Li M, Zhang K, Gao J, Wu F, Wu M, Geng D, Hu W 2025 Sci. Adv. 11 eadx8192Google Scholar

    [35]

    Meng P, Wu Y, Bian R, Pan E, Dong B, Zhao X, Chen J, Wu L, Sun Y, Fu Q, Liu Q, Shi D, Zhang Q, Zhang Y W, Liu Z, Liu F 2022 Nat. Commun. 13 7696Google Scholar

    [36]

    Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar

    [37]

    Lu H L, Yang M, Xie Z Y, Geng Y, Zhang Y, Wang P F, Sun Q Q, Ding S J, Wei Zhang D 2014 Appl. Phys. Lett. 104 161602Google Scholar

    [38]

    Fang Z, Solovyev I V, Terakura K 2000 Phys. Rev. Lett. 84 3169Google Scholar

  • [1] 钱涛, 徐涛. 铁电PbTiO3中的多铁性Aurivillius型界面的第一性原理研究.  , doi: 10.7498/aps.74.20250406
    [2] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , doi: 10.7498/aps.73.20231979
    [3] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , doi: 10.7498/aps.70.20201287
    [4] 李永宁, 谢逸群, 王音. 二维铁电In2Se3/InSe垂直异质结能带的应力调控.  , doi: 10.7498/aps.70.20211158
    [5] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , doi: 10.7498/aps.69.20191799
    [6] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , doi: 10.7498/aps.69.20201231
    [7] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究.  , doi: 10.7498/aps.69.20200080
    [8] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算.  , doi: 10.7498/aps.68.20191246
    [9] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , doi: 10.7498/aps.68.20190575
    [10] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究.  , doi: 10.7498/aps.68.20182266
    [11] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , doi: 10.7498/aps.64.187101
    [12] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算.  , doi: 10.7498/aps.63.207301
    [13] 陈龙天, 程用志, 聂彦, 龚荣洲. 人工异向介质调控电磁波极化特性的实验与仿真研究.  , doi: 10.7498/aps.61.094203
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , doi: 10.7498/aps.61.227102
    [15] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究.  , doi: 10.7498/aps.59.7961
    [16] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究.  , doi: 10.7498/aps.58.5653
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , doi: 10.7498/aps.58.8002
    [18] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响.  , doi: 10.7498/aps.57.3840
    [19] 顾晓玲, 郭 霞, 吴 迪, 徐丽华, 梁 庭, 郭 晶, 沈光地. GaN基多量子阱发光二极管的极化效应和载流子不均匀分布及其影响.  , doi: 10.7498/aps.56.4977
    [20] 朱振业, 王 彪, 郑 跃, 王 海, 李青坤, 李晨亮. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究.  , doi: 10.7498/aps.56.5986
计量
  • 文章访问数:  464
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-22
  • 修回日期:  2025-10-16
  • 上网日期:  2025-10-24

/

返回文章
返回
Baidu
map