搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁光选择-多端口架构的太赫兹隔离器

罗曼 徐振 李吉宁 陈锴 王与烨 钟凯 徐德刚 姚建铨

引用本文:
Citation:

基于磁光选择-多端口架构的太赫兹隔离器

罗曼, 徐振, 李吉宁, 陈锴, 王与烨, 钟凯, 徐德刚, 姚建铨

Terahertz isolator based on magneto-optical selection–multi-port architecture

LUO Man, XU Zhen, LI Jining, CHEN Kai, WANG Yuye, ZHONG Kai, XU Degang, YAO Jianquan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 针对反射信号携带有效信息的太赫兹系统, 如太赫兹时域反射系统、全双工通信系统等, 现有非互易太赫兹器件在实现隔离过程中常将反射信号视为干扰信号而进行削减, 无法适配上述系统对于在隔离的同时定向导出并检测反射信号的需求. 针对这一局限, 本研究创新性地提出一种基于磁光选择-多端口架构的太赫兹隔离器, 该器件通过正交双重光栅将线偏振光转换为特定圆偏振态, 结合InSb材料的磁光选择性, 构建非互易传输路径; 并在磁光调控机制中创新融入分支波导多端口特性, 同步实现入射/反射信号隔离与反射信号定向导出. 通过仿真结构尺寸与外界环境对该器件非互易特性的影响得到: 在温度为250 K, 磁场0.3 T条件下, 该器件在0.73 THz处实现了63.12 dB的高隔离度, 且在0.78 THz处双向传输效率达到36.31%, 3 dB带宽达到0.25 THz. 该器件具有高隔离度、低工作磁场强度、集成双重功能等优势, 为太赫兹应用于无损检测、通信等更多领域提供必要支撑.
    For terahertz systems where reflected signals carry effective information, such as terahertz time-domain reflection systems and full-duplex communication systems, existing nonreciprocal terahertz devices often treat reflected signals as interference and suppress them during isolation. This makes them incompatible with the requirements of such systems for isolating incident signals while directionally extracting and detecting reflected signals. To address this limitation, this study innovatively proposes a terahertz isolator based on a magneto-optical selection–multi-port architecture. The device converts linearly polarized light into a specific circular polarization state through orthogonal double gratings, and by combining the magneto-optical selectivity of InSb material, a nonreciprocal transmission path is constructed. Furthermore, the magneto-optical regulation mechanism innovatively combines branch waveguides with multiple ports and the characteristic of regulating terahertz transmission paths, while achieving isolation of incident/reflected signals and directionally extracting the reflected signals. The simulations of the influences of structural dimensions and external environmental conditions on the nonreciprocal characteristics of the device indicate that when the temperature is 250 K, the magnetic field is 0.3 T, and the structural parameters are set as follows: branch length of 170 μm, center-to-center spacings of adjacent branches of 125 μm, 125 μm, 120 μm, and 120 μm, InSb layer thickness of 5 μm, grating layer thickness of 50 μm, and substrate layer thickness of 20 μm, then the device achieves a high isolation of 63.12 dB at 0.73 THz. Additionally, at 0.78 THz, the bidirectional transmission efficiency reaches 36.31%, with a 3 dB bandwidth of 0.25 THz. This device has the advantages such as high isolation, low operating magnetic field strength, and integration of dual functions. It reduces interference from incident signals on reflected signals, simplifies subsequent processing steps such as noise reduction and localization of effective reflected signals, and improves the system's detection performance for weak signals. This provides essential support for expanding terahertz applications to more fields, including non-destructive testing and communication.
  • 图 1  基于磁光选择-多端口架构的太赫兹隔离器结构图 (a) 整体结构图; (b) InSb复合结构重复单元结构图与三视图

    Fig. 1.  Schematic diagrams of the four-port nonreciprocal terahertz device based on InSb-branch waveguide: (a) Overall structure; (b) schematic diagram and standard three-view drawings of the unit cell in the InSb composite structure.

    图 2  太赫兹波传输路径图

    Fig. 2.  Schematic diagram of terahertz wave propagation path.

    图 3  分支的长度对器件性能的影响 (a) 双向传输效率变化关系; (b) 隔离度变化关系

    Fig. 3.  Impact of branch length on device performance: (a) Dependence of bidirectional transmission efficiency; (b) dependence of isolation characteristics.

    图 4  相邻分支中心间距j1a1b, j1b2b, j2b3b, j3b2a与双向传输效率、隔离度的关系图 (a) j1a1b与双向传输效率的关系图; (b) j1a1b与隔离度的关系图; (c) j1b2b与双向传输效率的关系图; (d) j1b2b与隔离度的关系图; (e) j2b3b与双向传输效率的关系图; (f) j2b3b与隔离度的关系图; (g) j3b2a与双向传输效率的关系图; (h) j3b2a与隔离度的关系图

    Fig. 4.  Correlation between center-to-center spacings of adjacent branches (j1a1b, j1b2b, j2b3b, j3b2a) and bidirectional transmission efficiency/isolation characteristics: (a) Relationship between j1a1b and bidirectional transmission efficiency; (b) relationship between j1a1b and isolation; (c) relationship between j1b2b and bidirectional transmission efficiency; (d) relationship between j1b2b and isolation; (e) relationship between j2b3b and bidirectional transmission efficiency; (f) relationship between j2b3b and isolation; (g) relationship between j3b2a and bidirectional transmission efficiency; (h) relationship between j3b2a and isolation.

    图 5  InSb层高度$ {h}_{1} $对器件性能的影响 (a) $ {h}_{1} $小于等于5 μm时双向传输效率变化关系; (b) $ {h}_{1} $大于5 μm时双向传输效率变化关系; (c) 隔离度变化关系

    Fig. 5.  Influence of InSb layer thickness $ {h}_{1} $ on device performance: (a) Variation of bidirectional transmission efficiency at $ {h}_{1} $ ≤ 5 μm; (b) variation of bidirectional transmission efficiency at $ {h}_{1} $ > 5 μm; (c) variation of isolation.

    图 6  光栅层高度$ {h}_{2} $对器件性能的影响 (a) 双向传输效率变化关系; (b) 隔离度变化关系

    Fig. 6.  Influence of grating layer thickness $ {h}_{2} $ on device performance: (a) Variation of bidirectional transmission efficiency with thickness; (b) variation of isolation with thickness.

    图 7  光栅层高度$ {h}_{3} $对器件性能的影响 (a) 双向传输效率变化关系; (b) 隔离度变化关系

    Fig. 7.  Influence of grating layer thickness $ {h}_{3} $ on device performance: (a) Variation of bidirectional transmission efficiency with thickness; (b) variation of isolation with thickness.

    图 8  双向传输效率、隔离度与频率的关系图

    Fig. 8.  The diagram of bidirectional transmission efficiency and isolation versus frequency.

    图 9  温度对器件性能的影响 (a) 双向传输效率随温度变化关系; (b) 隔离度随温度变化关系

    Fig. 9.  Effect of temperature on device performance: (a) Variation of bidirectional transmission efficiency with temperature; (b) variation of isolation with temperature.

    图 10  磁场强度对器件性能的影响 (a) 双向传输效率随磁场强度变化关系; (b) 隔离度随磁场强度变化关系

    Fig. 10.  Effect of magnetic field intensity on device performance: (a) Variation of bidirectional transmission efficiency with magnetic field intensity; (b) variation of isolation with magnetic field intensity.

    表 1  环境参数设定

    Table 1.  Environmental parameter configuration.

    外界环境设置
    温度t/K 250
    磁场B/T 0.3
    下载: 导出CSV

    表 2  器件参数设定

    Table 2.  Device parameter configuration.

    结构参数 结构尺寸/μm
    InSb层高度h1 5
    光栅层高度h2 50
    衬底层高度h3 20
    光栅周期p 25
    光栅条宽度wid 15
    中心分支的高度比例因子b 0.618
    两端分支的高度比例因子a 0.618
    分支的长度h0 170
    相邻分支中心间距j1a1b 125
    相邻分支中心间距j1b2b 125
    相邻分支中心间距j2b3b 120
    相邻分支中心间距j3b2a 120
    下载: 导出CSV

    表 3  现有太赫兹隔离器性能对比

    Table 3.  Performance comparison of existing terahertz isolators.

    提出
    年限
    温度
    /K
    磁场强度
    /T
    隔离度
    /dB
    插入损耗
    /dB
    带宽
    /GHz
    能否定向导
    出反射信号
    2021[8] 室温 0.68 52 约7.5 0.14
    2022[22] 0.29 15 8 223.5
    2024[9] 303 0—0.3 34 0.0269 12
    2024[23] 36 3.9 4500
    2025[10] 34.28
    本文 250 0.3 63.12 4.3 250
    下载: 导出CSV
    Baidu
  • [1]

    Tamagnone M, Moldovan C, Poumirol J M, Kuzmenko A B, Ionescu A M, Mosig J R, Perruisseau-Carrier J 2016 Nat. Commun. 7 11216Google Scholar

    [2]

    Liu Y L, Li J S 2025 Opt. Commun. 575 131310Google Scholar

    [3]

    Wang Y, Ai Y Q, Gan L, Zhou J, Wang Y Y, Wang W, Xu B G, He W L, Li S G 2024 Micromachines 15 745Google Scholar

    [4]

    Zhao D, Fan F, Tan Z Y, Wang H, Chang S J 2023 Laser Photonics Rev. 17 2200509Google Scholar

    [5]

    Xu B G, Zhang D G, Wang Y, Hong B B, Shu G X, He W L 2023 Photonics 10 360Google Scholar

    [6]

    Heydari M B, Samiei M H V 2021 Optik 231 166457Google Scholar

    [7]

    Xue W, Zhang J Y, Ma J W, Hou Z L, Zhao Q L, Xie Q, Bi S 2021 J. Phys. D: Appl. Phys. 54 105103Google Scholar

    [8]

    Yuan S X, Chen L, Wang Z W, Deng W T, Hou Z B, Zhang C, Yu Y, Wu X J, Zhang X L 2021 Nat. Commun. 12 5570Google Scholar

    [9]

    Dong R Y, Sui J Y, Li Z J, Zhang H F 2024 Opt. Laser Technol. 169 110004Google Scholar

    [10]

    Liu Y L, Li J S, Xiong R H, Hu J R 2025 Opt. Express 33 8961Google Scholar

    [11]

    Xu Z, Ren X, Li J N, Liu L H, Zhang N, Luo M, Jiang C, Zhang J X, Qiao X M, Wang T, Xu D G 2024 Phys. Lett. A 524 129838Google Scholar

    [12]

    Liu L H, Li K R, Yang Q, Shang Y, Xu Z, Li J N, Xu D G, Yao J Q 2024 Microelectron. J. 151 106310Google Scholar

    [13]

    丰益年 2022 博士学位论文 (成都: 电子科技大学)

    Feng Y N 2022 Ph. D. Dissertation (Chengdu: School of Electronic Science and Engineering

    [14]

    Syed A, Almalki M H 2023 J. Comput. Networks Commun. 2023 9285354

    [15]

    Niu Z Q, Zhang B, Yang K, Yang Y L, Ji D F, Liu Y, Feng Y N, Fan Y, Chen X D, Li D T 2019 IEEE Trans. Microwave Theory Tech. 67 4733Google Scholar

    [16]

    Li H, Zhang D H, Meng J, Wang L 2024 Micromachines 15 1083Google Scholar

    [17]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [18]

    Shuvaev A M, Astakhov G V, Pimenov A, Brüne C, Buhmann H, Molenkamp L W 2011 Phys. Rev. Lett. 106 107404Google Scholar

    [19]

    Xu C R, Fan W R, Tang Y H, Wang D W 2025 Chin. Phys. Lett. 42 014201Google Scholar

    [20]

    Lin S, Silva S, Zhou J F, Talbayev D 2018 Adv. Opt. Mater. 6 1800572Google Scholar

    [21]

    Fan F, Xiong C Z, Chen J R, Chang S J 2018 Opt. Lett. 43 687Google Scholar

    [22]

    Dmitriev V, Nobre F, Castro W, Portela G, Assunção L 2022 Opt. Commun. 506 127312Google Scholar

    [23]

    Ju X W, Hu Z Q, Zhu G F, Huang F, Chen Y Q, Quo C X, Kono J, Belyanin A, Wang X F 2023 Opt. Express 31 38540Google Scholar

  • [1] 李禹希, 张会云, 陈炯煦, 王嘉诚, 张敏, 蒋庆友, 刘蒙, 张玉萍. 空间与时空涡旋光独立调控的太赫兹超表面.  , doi: 10.7498/aps.75.20251078
    [2] 徐振, 罗曼, 李吉宁, 刘龙海, 徐德刚. 太赫兹金属线波导传输特性实验研究及模拟分析.  , doi: 10.7498/aps.73.20240279
    [3] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输.  , doi: 10.7498/aps.71.20220191
    [4] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应.  , doi: 10.7498/aps.70.20211677
    [5] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , doi: 10.7498/aps.67.20180226
    [6] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , doi: 10.7498/aps.67.20171730
    [7] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , doi: 10.7498/aps.66.148705
    [8] 崔彬, 杨玉平, 马品, 杨雪莹, 马俪文. 全介质光栅在太赫兹波段的光调控特性.  , doi: 10.7498/aps.65.074209
    [9] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量.  , doi: 10.7498/aps.65.150601
    [10] 孙杰, 杨剑锋, 闫肃, 杨晶晶, 黄铭. 等离子体辅助平板波导的传输特性及应用研究.  , doi: 10.7498/aps.64.078402
    [11] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计.  , doi: 10.7498/aps.64.174103
    [12] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究.  , doi: 10.7498/aps.63.010702
    [13] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , doi: 10.7498/aps.63.075201
    [14] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究.  , doi: 10.7498/aps.63.020702
    [15] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现.  , doi: 10.7498/aps.61.098701
    [16] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究.  , doi: 10.7498/aps.61.064102
    [17] 郭展, 范飞, 白晋军, 牛超, 常胜江. 基于磁光子晶体的磁控可调谐太赫兹滤波器和开关.  , doi: 10.7498/aps.60.074218
    [18] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件.  , doi: 10.7498/aps.60.084219
    [19] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究.  , doi: 10.7498/aps.59.2169
    [20] 李文平, 张雅鑫, 刘盛纲, 刘大刚. 特殊三反射镜太赫兹波段准光腔回旋管的动力学理论.  , doi: 10.7498/aps.57.2875
计量
  • 文章访问数:  568
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-18
  • 修回日期:  2025-10-28
  • 上网日期:  2025-11-01

/

返回文章
返回
Baidu
map