搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6Li+208Pb体系的反常阈异常现象

黄志杰 杨磊 林承键 贾会明 马南茹 杨峰 温培威

引用本文:
Citation:

6Li+208Pb体系的反常阈异常现象

黄志杰, 杨磊, 林承键, 贾会明, 马南茹, 杨峰, 温培威

The abnormal threshold anomaly in the 6Li+208Pb system

HUANG Zhijie, YANG Lei, LIN Chengjian, JIA Huiming, MA Nanru, YANG Feng, WEN Peiwei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 光学势作为描述核碰撞相互作用的重要工具, 被广泛应用于核反应机制的研究中. 光学势对核结构具有高度敏感性, 故弱束缚核与紧束缚核的光学势存在显著差异. 大量研究表明, 紧束缚核体系的唯象光学势在近库仑势垒能区表现出阈异常现象, 其实部与虚部的关系可通过色散关系精确描述. 然而对于弱束缚核体系(如6Li、9Be和6He等)引起的反应, 由于在近垒及垒下能区缺乏足够的实验数据, 其光学势的行为仍存在争议. 在中国原子能科学研究院HI-13串列加速器上, 实验测量了6Li+208Pb体系在近垒和深垒能区的弹性散射角分布, 并经光学模型拟合获取其光学势参数. 该体系的光学势呈现出反常的阈异常特征, 且色散关系也不适用于该体系. 此外, 从深垒数据得到6Li+208Pb体系的反应阈值约0.73VB(VB为库仑势垒), 并进一步对不同体系的反应阈值和破裂阈进行了系统学分析. 本工作测量了近垒及深垒能量下6Li+208Pb体系的光学势, 为进一步研究反常阈异常现象提供了数据支持. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00218中访问获取.
    The optical potential is a key tool for describing interactions in nuclear collisions and is widely used in studies of nuclear reaction mechanisms. It is highly sensitive to nuclear structure, leading to distinct characteristics between weakly bound and tightly bound nuclear systems.For weakly bound nuclei such as 6Li, 9Be and 6He, the behavior of the optical potential remains controversial due to insufficient experimental data at near-barrier and deep-barrier energies.In this work, elastic scattering angular distributions for the 6Li+208Pb system were measured at near-barrier and deep-barrier energies. Optical model fitting was employed to extract the optical potential parameters. The results indicate an anomalous threshold anomaly in the optical potential of this system, and the dispersion relation is not applicable. Furthermore, the reaction threshold for the 6Li+208Pb system was determined to be approximately 0.73VB based on deep-barrier data. A systematic analysis was also performed on the reaction thresholds and breakup thresholds of different nuclear systems.This work measured the optical potential of the 6Li+208Pb system at near-barrier and deep sub-barrier energies, providing data support for further investigation of the anomalous threshold anomaly.The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00218.
  • 图 1  实验设置示意图

    Fig. 1.  Schematic of the experimental setup

    图 2  PIN探测器测得的6Li+208Pb体系的典型能谱

    Fig. 2.  Typical energy spectrums of the 6Li+208Pb system obtained by the PIN detector.

    图 3  6Li+208Pb体系在近垒及深垒能量下的弹性散射角分布. 红色实线为FRESCO程序的拟合结果

    Fig. 3.  Elastic scattering angular distributions for the 6Li+208Pb system at near-barrier and deep-barrier energies.The red solid lines are the fitting results of the FRESCO.

    图 4  在灵敏半径$ R_{S} $ = 12.42 fm处, 6Li+208Pb体系实势(a)和虚势(b). 图(a)中的红色实线是虚部的分段线性拟合曲线, 图(b)中的红色实线是由色散关系计算出实部的预测曲线. 本次实验结果由圆点表示, 高能处的星形点数据来自文献[27]

    Fig. 4.  At the sensitivity radius of 12.42 fm, the real (a) and imaginary (b) potentials of the 6Li+208Pb system. The solid red line in Figure (a) is the piecewise linear fit curve of the imaginary part, while in Figure (b) is the predicted curve of the real part calculated based on the dispersion relation. The present results are shown by the circles, and asterisks represent the results taken from Ref. [27].

    图 5  不同体系反应阈值与破裂阈的关系

    Fig. 5.  The relationship between the reaction threshold and the breakup threshold in different systems.

    表 1  6Li+208Pb体系的弹性散射角分布提取出的光学势参数, 拟合过程中所有的几何参数固定为$ r_{V} $ = 1.15 fm, $ a_{V} $ = 0.66 fm, $ r_{W} $ = 1.29 fm, $ a_{W} $ = 0.60 fm

    Table 1.  The optical model potential parameters of 6Li+208Pb extracted from elastic scattering by the OM calculations. The geometry parameters were fixed as $ r_{V} $ = 1.15 fm, $ a_{V} $ = 0.66 fm, $ r_{W} $ = 1.29 fm, $ a_{W} $ = 0.60 fm.

    Elab MeVV MeVW MeV$ \chi^2 / {\rm{pt}} $
    32.02101.7233.247.76
    30.05106.7736.935.47
    28.09126.6031.713.44
    26.12148.9552.073.64
    24.1585.1549.812.55
    22.1967.0110.352.13
    20.222.910.962.21
    下载: 导出CSV
    Baidu
  • [1]

    Shen Q B, Han Y L, Guo H R 2009 Phys. Rev. C 80 024604Google Scholar

    [2]

    Guo H R, Xu Y L, Liang H Y, Han Y L, Shen Q B 2014 Nucl. Phys. A 922 84Google Scholar

    [3]

    Guo H R, Xu Y L, Han Y l, Shen Q B 2010 Phys. Rev. C 81 044617Google Scholar

    [4]

    Guo H R, Zhang Y, Han Y L, Shen Q B 2009 Phys. Rev. C 79 064601Google Scholar

    [5]

    马引群, 马中玉 2008 57 74Google Scholar

    Ma Y Q, Ma Z Y 2008 Acta Phys. Sin. 57 74Google Scholar

    [6]

    Baeza A, Bilwes B, Bilwes R, Díaz J, Ferrero J 1984 Nucl. Phys. A 419 412Google Scholar

    [7]

    Lilley J, Fulton B, Nagarajan M, Thompson I, Banes D 1985 Phys. Lett. B 151 181Google Scholar

    [8]

    Nagarajan M A, Mahaux C C, Satchler G R 1985 Phys. Rev. Lett. 54 1136Google Scholar

    [9]

    Passatore G 1967 Nucl. Phys. A 95 694Google Scholar

    [10]

    Carlson B V, Frederico T, Hussein M S, Esbensen H, Landowne S 1990 Phys. Rev. C 41 933Google Scholar

    [11]

    Nussenzveig H 1972 In Causality and Dispersion Relations (New York : Academic Press), pp 3–53

    [12]

    Fukuda M, Ichihara T, Inabe N, Kubo T, Kumagai H, Nakagawa T, Yano Y, Tanihata I, Adachi M, Asahi K, Kouguchi M, Ishihara M, Sagawa H, Shimoura S 1991 Phys. Lett. B 268 339Google Scholar

    [13]

    Tanihata I, Kobayashi T, Suzuki T, Yoshida K, Shimoura S, Sugimoto K, Matsuta K, Minamisono T, Christie W, Olson D, Wieman H 1992 Phys. Lett. B 287 307Google Scholar

    [14]

    Suzuki T, Kanungo R, Bochkarev O, Chulkov L, Cortina D, Fukuda M, Geissel H, Hellström M, Ivanov M, Janik R, Kimura K, Kobayashi T, Korsheninnikov A, Münzenberg G, Nickel F, Ogloblin A, Ozawa A, Pfützner M, Pribora V, Simon H, Sitár B, Strmeň P, Sumiyoshi K, Sümmerer K, Tanihata I, Winkler M, Yoshida K 1999 Nucl. Phys. A 658 313Google Scholar

    [15]

    Smedberg M, Baumann T, Aumann T, Axelsson L, Bergmann U, Borge M, Cortina-Gil D, Fraile L, Geissel H, Grigorenko L, Hellström M, Ivanov M, Iwasa N, Janik R, Jonson B, Lenske H, Markenroth K, Münzenberg G, Nilsson T, Richter A, Riisager K, Scheidenberger C, Schrieder G, Schwab W, Simon H, Sitar B, Strmen P, Sümmerer K, Winkler M, Zhukov M 1999 Phys. Lett. B 452 1Google Scholar

    [16]

    Keeley N, Bennett S, Clarke N, Fulton B, Tungate G, Drumm P, Nagarajan M, Lilley J 1994 Nucl. Phys. A 571 326Google Scholar

    [17]

    Figueira J M, Niello J O F, Arazi A, Capurro O A, Carnelli P, Fimiani L, Martí G V, Heimann D M, Negri A E, Pacheco A J, Lubian J, Monteiro D S, Gomes P R S 2010 Phys. Rev. C 81 024613Google Scholar

    [18]

    Hussein M S, Gomes P R S, Lubian J, Chamon L C 2007 Phys. Rev. C 76 019902

    [19]

    Yang L, Lin C J, Jia H M, Wang D X, Ma N R, Sun L J, Yang F, Xu X X, Wu Z D, Zhang H Q, Liu Z H 2017 Phys. Rev. Lett. 119 042503Google Scholar

    [20]

    Fimiani L, Figueira J M, Martí G V, Testoni J E, Pacheco A J, Cárdenas W H Z, Arazi A, Capurro O A, Cardona M A, Carnelli P, de Barbará E, Hojman D, Martinez Heimann D, Negri A E 2012 Phys. Rev. C 86 044607Google Scholar

    [21]

    Gómez Camacho A, Gomes P R S, Lubian J 2010 Phys. Rev. C 82 067601Google Scholar

    [22]

    Thompson I J 1988 Comput. Phys. Rep. 7 167Google Scholar

    [23]

    Igo G 1958 Phys. Rev. Lett. 1 72

    [24]

    Cramer J G, DeVries R M 1980 Phys. Rev. C 22 91

    [25]

    Roubos D, Pakou A, Alamanos N, Rusek K 2006 Phys. Rev. C 73 051603

    [26]

    Michel F, Albinski J, Belery P, Delbar T, Grégoire G, Tasiaux B, Reidemeister G 1983 Phys. Rev. C 28 1904

    [27]

    Zhang C L, Zhang H Q, Lin C J, Ruan M, Liu Z H, Yang F, Wu X K, Zhou P, An G P, Jia H M, Wu Z D, Xu X X, Bai C L 2006 Chin. Phys. Lett. 23 1146

    [28]

    Mahaux C, Ngô H, Satchler G 1986 Nucl. Phys. A 449 354

    [29]

    Lipperheide R, Schmidt A 1968 Nucl. Phys. A 112 65

    [30]

    Pakou A, Alamanos N, Doukelis G, Gillibert A, Kalyva G, Kokkoris M, Kossionides S, Lagoyannis A, Musumarra A, Papachristodoulou C, Patronis N, Perdikakis G, Pierroutsakou D, Pollacco E C, Rusek K 2004 Phys. Rev. C 69 054602Google Scholar

    [31]

    Szabó Z 2017 IEEE Trans. Microwave Theory Techn. 65 1150Google Scholar

    [32]

    阎春生 2019 中国光学 12 179Google Scholar

    Yan C S 2019 Chin. Opt. 12 179Google Scholar

    [33]

    Lin C J, Xu J C, Zhang H Q, Liu Z H, Yang F, Lu L X 2001 Phys. Rev. C 63 064606Google Scholar

    [34]

    Dubey S, Mukherjee S, Biswas D C, Nayak B K, Patel D, Prajapati G K, Gupta Y K, Joshi B N, Danu L S, Mukhopadhyay S, John B V, Desai V V, Suryanarayana S V, Vind R P, Deshmukh N N, Appnnababu S, Prajapati P M 2014 Phys. Rev. C 89 014610Google Scholar

    [35]

    Palli K, Pakou A, Moro A M, O’Malley P D, Acosta L, Sánchez-Benítez A M, Souliotis G, Aguilera E F, Andrade E, Godos D, Sgouros O, Soukeras V, Agodi C, Bailey T L, Bardayan D W, Boomershine C, Brodeur M, Cappuzzello F, Carmichael S, Cavallaro M, Dede S, Dueñas J A, Henning J, Lee K, Porter W S, Rivero F, von Seeger W 2023 Phys. Rev. C 107 064613Google Scholar

    [36]

    So W Y, Udagawa T, Kim K S, Hong S W, Kim B T 2010 Phys. Rev. C 81 047604Google Scholar

    [37]

    黄志杰, 林承键, 杨磊, 贾会明, 马南茹, 温培威, 杨峰, 王丹英, 骆天鹏, 常昶, 段海锐, 祝颂娴, 尹诚, 杨炅和, 王浩睿, 范泽睿, 傅凌逸, 李慧艳 2024 原子能科学技术 58 2255

    Huang Z J, Lin C J, Yang L, Jia H M, Ma N R, Wen P W, Yang F, Wang D Y, Luo T P, Chang C, Duan H R, Zhu S X, Yin C, Yang J H, Wang H R, Fan Z R, Fu L Y, Li H Y 2024 At. Energy Sci. Technol. 58 2255

  • [1] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响.  , doi: 10.7498/aps.70.20201483
    [2] 李鹤龄, 王娟娟, 杨斌, 沈宏君. 由N-E-V分布及赝势法研究弱磁场中弱相互作用费米子气体的热力学性质.  , doi: 10.7498/aps.64.040501
    [3] 游阳明, 王炳章, 王吉有. P原子的光学模型势与核极化修正.  , doi: 10.7498/aps.61.202401
    [4] 胡小颖, 周雅君. 光学势在(e, 2e)反应动力学过程的作用.  , doi: 10.7498/aps.59.2423
    [5] 鞠志萍, 曹午飞, 刘小伟. 质子散射角分布的蒙特卡罗模拟.  , doi: 10.7498/aps.58.174
    [6] 马引群, 马中玉. 6Li与核弹性散射的微观光学势.  , doi: 10.7498/aps.57.74
    [7] 邓一兵, 王世来. 动量空间中能质子-12C弹性散射截面和自旋量的研究.  , doi: 10.7498/aps.56.137
    [8] 朱萍, 徐加豹, 高琴. 以改进的定域密度近似研究核子-有限核的相对论微观光学势.  , doi: 10.7498/aps.42.9
    [9] 施建青. 氘-核自洽微观光学势的温度依赖性.  , doi: 10.7498/aps.42.1067
    [10] 李少甫, 刘强, 徐向东, 钱青, 陈学俊. 多重散射展开方法应用于正电子-氢原子的弹性散射角分布的计算.  , doi: 10.7498/aps.42.911
    [11] 李彤, 徐向东, 刘强, 钱青, 陈学俊. 多重散射展开方法应用于电子-氢原子弹性散射角分布的计算.  , doi: 10.7498/aps.42.905
    [12] 施建青. 氘-核微观光学势的自洽研究.  , doi: 10.7498/aps.41.1929
    [13] 李介平. 弱光场下电子与库仑势散射问题的弱耦合解法.  , doi: 10.7498/aps.39.38
    [14] 张禹顺, 李扬国. 高能质子与原子核的弹性和非弹性散射.  , doi: 10.7498/aps.26.449
    [15] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅱ).  , doi: 10.7498/aps.25.308
    [16] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅰ).  , doi: 10.7498/aps.25.197
    [17] 卓益忠, 李泽清, 李明寿. 原子核的对相互作用对裂变碎块角分布的影响.  , doi: 10.7498/aps.22.136
    [18] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势.  , doi: 10.7498/aps.22.569
    [19] 况浩怀, 李如柏, 谭有恆, 刘永钺. 高能宇宙线粒子与石蜡核作用的角分布.  , doi: 10.7498/aps.21.976
    [20] 金星南. 高能电子对原子核C12的弹性散射.  , doi: 10.7498/aps.15.25
计量
  • 文章访问数:  226
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-16
  • 修回日期:  2025-10-30
  • 上网日期:  2025-10-31

/

返回文章
返回
Baidu
map