-
为更全面地探究个体识别或接受外界信息能力的差异性对意识传播,进而对疾病传播的影响,本文在构建了具有高阶交互作用的意识-疾病双层网络后,创新性地引入个体异质性因子,提出UAU-SIS(Unaware-Aware-Unaware-Susceptible-Infected-Susceptible)意识-疾病传播模型。该模型中的异质性主要通过个体的一阶度、二阶度以及协调因子、响应因子体现。基于微观马尔可夫链方法(Microscopic Markov Chain Approach,MMCA),本文对提出的UAU-SIS模型进行意识和疾病协同传播的理论分析,从理论上推导出疾病传播阈值的数学表达式。蒙特卡洛(Monte Carlo,MC)数值模拟验证了MMCA理论分析的可行性与有效性,同时,大量的数值模拟探究了个体异质性对意识传播、疾病传播及传播阈值的影响。结果表明:合理调控意识层的一阶平均度和二阶平均度,可有效促进意识传播,提升整体疾病防控效果;此外,减小协调因子或增强响应因子,能够有效推动意识传播,提高疾病传播阈值,从而抑制疾病传播。Generally, when individuals obtain information about epidemic risks, they will arouse their awareness of self-protection and thus take various effective self-protection measures independently. However, there is often significant different response for different individual. To explore more comprehensively the impact of differences in individuals' ability to identify or accept external information on awareness diffusion, as well as on epidemic spreading, this paper constructs an awareness-epidemic double-layer network with higher-order interactions, innovatively introduces an individual heterogeneity factor, and proposes the UAU-SIS ( Unaware- Aware- Unaware- Susceptible- Infected- Susceptible ) awareness-epidemic spreading model. The heterogeneity in this model is mainly reflected by individuals' first-order degree, second-order degree, coordination factor, and response factor. Based on the Microscopic Markov Chain Approach (Microscopic Markov Chain Approach, MMCA) and the proposed UAU-SIS model, this paper conducts a theoretical analysis of the coevolution of awareness and epidemic, and theoretically deduces the mathematical expression of the epidemic threshold. Monte Carlo( Monte Carlo, MC) numerical simulations verify the feasibility and effectiveness of the MMCA theoretical analysis. Meanwhile, numerous numerical simulations have explored the impact of individual heterogeneity on awareness diffusion, epidemic spreading, and epidemic threshold. The results show that reasonable regulation of the first-order average degree and second-order average degree of the awareness layer can effectively promote awareness diffusion and improve the overall effect of epidemic prevention and control. In addition, reducing the coordination factor or increasing the response factor can effectively promote awareness diffusion, raise the epidemic threshold, and thus block epidemic spreading.
-
Keywords:
- Higher-order double-layer network /
- Awareness-epidemic spreading /
- Individual heterogeneity /
- Epidemic threshold /
- MMCA
-
[1] Morens D M, Fauci A S 2007 J. Infect. Dis. 195 1018
[2] Liu W B 2013 Adv. Mater. Res. 2480 776
[3] Rahman M A, Zaman N, Asyhari A T, Al-Turjman F, Bhuiyan M Z A, Zolkipli M F 2020 Sustain. Cities Soc. 62 102372
[4] Kermack W O, McKendrick A G 1927 Proc. R. Soc. Lond. A 115 700
[5] Kermack W O, McKendrick A G 1932 Proc. R. Soc. Lond. A 138 55
[6] Watts D J, Strogatz S H 1998 Nature 393 440
[7] Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200
[8] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925
[9] Guo Q T, Jiang X, Lei Y J, Li M, Ma Y F, Zheng Z M 2015 Phys. Rev. E 91 012822
[10] Yin Q, Wang Z S, Xia C Y, Bauch C T 2022 Commun. Nonlinear Sci. Numer. Simul. 109 106312
[11] Funk S, Gilad E, Watkins C, Jansen V A A 2009 Proc. Natl. Acad. Sci. 106 6872
[12] Granell C, Gómez S, Arenas A 2013 Phys. Rev. Lett. 111 128701
[13] Velásquez-Rojas F, Ventura P C, Connaughton C, Moreno Y, Rodrigues F A, Vazquez F 2020 Phys. Rev. E 102 022312
[14] Guo Y F, Tu L L, Shen H, Chai L 2022 Phys. Rev. E 106 034307
[15] Yang H, Tang M, Cai S M, Zhou T 2016 Acta Phys. Sin. 65 058901(in Chinese) [杨慧,唐明,蔡世民,周涛2016 65 058901]
[16] Pan Y H, Yan Z J 2018 Chaos 28 063123
[17] Chen P Y, Guo X D, Jiao Z T, Liang S H, Li L F, Yan J, Huang Y D, Liu Y, Fan W H 2022 Front. Phys. 10 964883
[18] Ugander J, Backstrom L, Marlow C, Kleinberg J 2012 Proc. Natl. Acad. Sci. 109 5962
[19] Liu B, Zeng Y J, Yang R M, Lv L Y 2024 Acta Phys. Sin. 73 128901(in Chinese) [刘波,曾钰洁,杨荣湄,吕琳媛2024 73 128901]
[20] Iacopini I, Petri G, Barrat A, Latora V 2019 Nat. Commun. 10 2485
[21] Landry N W, Restrepo J G 2020 Chaos 30 103117
[22] Wang D, Zhao Y, Luo J F, Leng H 2021 Chaos 31 053112
[23] Barabási A L, Albert R 1999 Science 286 509
[24] Wang H, Zhang H F, Zhu P C, Ma C 2022 Chaos 32 083110
计量
- 文章访问数: 27
- PDF下载量: 0
- 被引次数: 0








下载: