搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维格点空间相对论密度泛函理论: 基于PC-PK1的裂变位垒研究

黄逸涵 李博 赵鹏巍

引用本文:
Citation:

三维格点空间相对论密度泛函理论: 基于PC-PK1的裂变位垒研究

黄逸涵, 李博, 赵鹏巍

Relativistic density functional theory in 3D lattice: Fission barriers with PC-PK1

HUANG Yihan, LI Bo, ZHAO Pengwei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文利用三维格点空间相对论密度泛函理论, 在轴对称破缺, 反射对称破缺和$V_{4}$对称性破缺时, 计算了锕系原子核的势能曲线, 探索了所有四极和八极形变自由度对裂变内垒, 外垒和同核异能态的影响. 我们的计算结果表明: 反射对称性破缺能显著地降低外垒的高度, 轴对称性破缺能同时降低内垒和外垒的高度, $V_{4}$对称性破缺对内垒和外垒几乎没有影响, 同核异能态几乎不受对称性破缺的影响. 基于相对论密度泛函PC-PK11, 对同核异能态的能量经验值有轻微低估. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00229中访问获取.
    Nuclear fission is a decay process by which a heavy nucleus splits into two or more lighter nuclei. It plays a crucial role in the synthesis of superheavy elements, the rapid neutron-capture process, nuclear energy application and so on. The fission barrier is an important property of heavy nuclei, because its height and width directly relate with the lifetime of heavy nuclei, and affect charge yield, mass yield, and kinetic energy of fission fragments. In our study, the potential energy curves of actinide nuclei are obtained from the relativistic density functional theory in 3D lattice when the axial symmetry, reflection symmetry and $V_4$ symmetry are broken in turn. The effects of all the quadrupole and octupole deformation degrees of freedom on the inner barrier, outer barrier, and the fission isomeric state are investigated. It is found that breaking the reflection symmetry can lower the outer fission barriers significantly, breaking the axial symmetry can lower both the inner and outer barriers, breaking the $V_4$ symmetry has little effect on the inner and outer barriers, and the fission isomeric state is almost unaffected by symmetry breaking. Based on the relativistic density functional PC-PK1 and monopole pairing interaction, our results well reproduce the empirical values of the inner and outer barriers extracted from experiments, and the energies of the fission isomeric states are slightly underestimated. All the data presented in this paper is openly available at https://www.doi.org/10.57760/sciencedb.j00213.00229.
  • 图 1  $ Z=94 $的偶偶核中子对隙(蓝色空心方框)和实验上提取的中子经验对隙(黑色实心方框)随质量数的变化. $ N=146 $的偶偶核的质子对隙(红色空心圆)和实验上提取的质子经验对隙(黑色实心圆)随质量数的变化

    Fig. 1.  The neutron pairing gap calculated by 3DRDFT (blue open square) and extracted from experiments (black solid square) versus mass number for the even-even nuclei with $ Z = 94 $. The proton pairing gap calculated by 3DRDFT (red open circle) and extracted from experiments (black solid circle) versus mass number for the even-even nuclei with $ N = 146 $.

    图 2  $ ^{240}{\rm{Pu}} $分别在保持轴对称和反射对称性(紫色点划线), 轴对称性(蓝色短划线), $ V_{4} $对称性(红色实线)时的势能曲线以及$ V_{4} $对称性破缺后在裂变内垒, 外垒和同核异能态附近的势能(绿色空心圆). 经验裂变内垒$ B_f^i $, 外垒$ B_f^o $, 和同核异能态$ E_{{\rm{iso}}} $的能量由黑色横线标记. 取$ ^{240}{\rm{Pu}} $的基态能量为$ 0 $

    Fig. 2.  The potential energy curve of $ ^{240}{\rm{Pu}} $ with axial symmetry and reflection symmetry (purple dot-dashed line), axial symmetry (blue dashed line), $ V_{4} $ symmetry (red solid line) and potential energy of $ ^{240}{\rm{Pu}} $ nearby inner barrier, outer barrier, isomeric state with $ V_{4} $ symmetry breaking (green open circle). The empirical inner barrier $ B_{f}^{i} $, outer barrier $ B_{f}^{o} $ and isomeric state $ E_{iso} $ is denoted by the black dash line. The energy is normalized with respect to the energy of the ground state.

    表 1  在$ V_{4} $对称性破缺时, 7 个锕系原子核的裂变内垒, 外垒和同核异能态的能量经验值[75,76]$ \Delta E_{{\rm{Exp}}} $和基于3DRDFT计算的能量$ \Delta E_{{\rm{Theo}}} $, 四极形变$ \beta_{20} $, $ \beta_{22} $和八级形变$ \beta_{30} $, $ \beta_{31} $, $ \beta_{32} $, $ \beta_{33} $

    Table 1.  The energies extracted from experiments $ \Delta E_{{\rm{Exp}}} $ and the energies $ \Delta E_{{\rm{Theo}}} $, quadrupole deformations $ \beta_{20} $, $ \beta_{22} $ and octupole deformations $ \beta_{30} $, $ \beta_{31} $, $ \beta_{32} $, $ \beta_{33} $ of fission inner barrier, outer barrier, and isomeric states of 7 actinide nuclei obtained by 3DRDFT with $ V_{4} $ symmetry breaking.

    核素 $ ^{232}{\rm{U}} $ $ ^{234}{\rm{U}} $ $ ^{236}{\rm{U}} $ $ ^{238}{\rm{U}} $ $ ^{236}{\rm{Pu}} $ $ ^{238}{\rm{Pu}} $ $ ^{240}{\rm{Pu}} $
    内垒 $ \Delta E_{{\rm{Exp}}}\ [{\rm{MeV]}} $ 4.90 4.80 5.00 6.30 - 5.60 6.05
    $ \Delta E_{{\rm{Theo}}}\ [{\rm{MeV]}} $ 4.59 5.24 5.13 5.70 5.94 5.75 6.12
    $ \beta_{20} $ 0.60 0.60 0.60 0.65 0.60 0.60 0.65
    $ \beta_{22} $ 0.04 0.06 0.06 0.06 0.06 0.06 0.06
    $ \beta_{30} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{31} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{32} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{33} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    外垒 $ \Delta E_{{\rm{Exp}}}\ [{\rm{MeV]}} $ 5.40 5.50 5.67 5.50 - 5.10 5.15
    $ \Delta E_{{\rm{Theo}}}\ [{\rm{MeV]}} $ 5.45 6.06 5.58 5.78 5.15 5.02 5.12
    $ \beta_{20} $ 1.20 1.20 1.35 1.35 1.20 1.25 1.40
    $ \beta_{22} $ 0.03 0.03 0.03 0.03 0.03 0.03 0.02
    $ \beta_{30} $ 0.41 0.37 0.39 0.50 0.35 0.30 0.51
    $ \beta_{31} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{32} $ 0.02 0.01 0.00 0.00 0.02 0.01 0.01
    $ \beta_{33} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    同核异能态 $ \Delta E_{{\rm{Exp}}}\ [{\rm{MeV]}} $ - - 2.3 2.6 - 2.4 2.25
    $ \Delta E_{{\rm{Theo}}}\ [{\rm{MeV]}} $ 2.1 1.2 1.2 1.2 1.4 1.4 1.4
    $ \beta_{20} $ 0.85 0.90 0.90 1.00 0.90 0.90 0.95
    $ \beta_{22} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{30} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{31} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{32} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    $ \beta_{33} $ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    下载: 导出CSV
    Baidu
  • [1]

    Schmidt K H, Jurado B 2018 Rep. Prog. Phys. 81 106301Google Scholar

    [2]

    Bender M, Bernard R, Bertsch G, Chiba S, Dobaczewski J, Dubray N, Giuliani S A, Hagino K, Lacroix D, Li Z, Magierski P, Maruhn J, Nazarewicz W, Pei J, Péru S, Pillet N, Randrup J, Regnier D, Reinhard P G, Robledo L M, Ryssens W, Sadhukhan J, Scamps G, Schunck N, Simenel C, Skalski J, Stetcu I, Stevenson P, Umar S, Verriere M, Vretenar D, Warda M, Åberg S 2020 J. Phys. G: Nucl. Part. Phys. 47 113002Google Scholar

    [3]

    Schunck N, Robledo L M 2016 Rep. Prog. Phys. 79 116301Google Scholar

    [4]

    Schunck N, Regnier D 2022 Prog. Part. Nucl. Phys. 125 103963Google Scholar

    [5]

    Hofmann S, Münzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [6]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Y S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502Google Scholar

    [7]

    Möller P, Sierk A J, Ichikawa T, Iwamoto A, Bengtsson R, Uhrenholt H, Åberg S 2009 Phys. Rev. C 79 064304

    [8]

    Pei J C, Nazarewicz W, Sheikh J A, Kerman A K 2009 Phys. Rev. Lett. 102 192501Google Scholar

    [9]

    Korobkin O, Rosswog S, Arcones A, Winteler C 2012 Mon. Not. R. Astron. Soc. 426 1940Google Scholar

    [10]

    Just O, Bauswein A, Pulpillo R A, Goriely S, Janka H T 2015 Mon. Not. R. Astron. Soc. 448 541Google Scholar

    [11]

    Chen J W, Pei J C, Qiang Y, Chi J H 2023 Chin. Phys. Lett. 40 012401Google Scholar

    [12]

    Möller P, Madland D, Sierk A, Iwamoto A 2001 Nature 409 785790

    [13]

    Pomorski K, Dudek J 2003 Phys. Rev. C 67 044316Google Scholar

    [14]

    Ivanyuk F A, Pomorski K 2009 Phys. Rev. C 79 054327Google Scholar

    [15]

    Kowal M, Jachimowicz P, Sobiczewski A 2010 Phys. Rev. C 82 014303

    [16]

    Royer G, Jaffré M, Moreau D 2012 Phys. Rev. C 86 044326Google Scholar

    [17]

    Mamdouh A, Pearson J, Rayet M, Tondeur F 2001 Nucl. Phys. A 679 337Google Scholar

    [18]

    Bürvenich T, Bender M, Maruhn J A, Reinhard P G 2004 Phys. Rev. C 69 014307Google Scholar

    [19]

    Samyn M, Goriely S, Pearson J M 2005 Phys. Rev. C 72 044316Google Scholar

    [20]

    Minato F, Chiba S, Hagino K 2009 Nucl. Phys. A 831 150Google Scholar

    [21]

    Egido J L, Robledo L M 2000 Phys. Rev. Lett. 85 1198Google Scholar

    [22]

    Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N, Stoitsov M V, Wild S M 2012 Phys. Rev. C 85 024304

    [23]

    McDonnell J, Schunck N, Nazarewicz W 2013 in Fission and Properties of Neutron-Rich Nuclei: Proceedings of the Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei (ICFN5) (Singapore: World Scientific Publishing Company) pp597–604

    [24]

    Staszczak A, Baran A, Nazarewicz W 2013 Phys. Rev. C 87 024320Google Scholar

    [25]

    Schunck N, Duke D, Carr H, Knoll A 2014 Phys. Rev. C 90 054305

    [26]

    Blum V, Maruhn J A, Reinhard P G, Greiner W 1994 Phys. Lett. B 323 262Google Scholar

    [27]

    Zhang W, Zhang S S, Zhang S Q, Meng J 2003 Chin. Phys. Lett. 20 1694Google Scholar

    [28]

    Lü H F, Geng L S, Meng J 2006 Chin. Phys. Lett. 23 2940Google Scholar

    [29]

    Li Z P, Nikšić T, Vretenar D, Ring P, Meng J 2010 Phys. Rev. C 81 064321Google Scholar

    [30]

    Abusara H, Afanasjev A V, Ring P 2010 Phys. Rev. C 82 044303

    [31]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. C 85 011301Google Scholar

    [32]

    Lu B N, Zhao J, Zhao E G, Zhou S 2012 EPJ Web Conf. 38 05003Google Scholar

    [33]

    Abusara H, Afanasjev A V, Ring P 2012 Phys. Rev. C 85 024314Google Scholar

    [34]

    Prassa V, Nikšić T, Lalazissis G A, Vretenar D 2012 Phys. Rev. C 86 024317Google Scholar

    [35]

    Möller P, Sierk A J, Iwamoto A 2004 Phys. Rev. Lett. 92 072501Google Scholar

    [36]

    Brack M, Damgaard J, Jensen A S, Pauli H C, Strutinsky V M, Wong C Y 1972 Rev. Mod. Phys. 44 320Google Scholar

    [37]

    Pashkevich V 1969 Nucl. Phys. A 133 400Google Scholar

    [38]

    Möller P, Nilsson S G 1970 Phys. Lett. B 31 283

    [39]

    Randrup J, Larsson S E, Möller P, Nilsson S G, Pomorski K, Sobiczewski A 1976 Phys. Rev. C 13 229

    [40]

    Pashkevich V 1971 Nucl. Phys. A 169 275Google Scholar

    [41]

    Pauli H C, Ledergerber T, Brack M 1971 Phys. Lett. B 34 264Google Scholar

    [42]

    Bender M, Heenen P H, Reinhard P G 2003 Rev. Mod. Phys. 75 121Google Scholar

    [43]

    Meng J 2016 Relativistic Density Functional for Nuclear Structure (Singapore: World Scientific) p716

    [44]

    Girod M, Grammaticos B 1983 Phys. Rev. C 27 2317Google Scholar

    [45]

    Rutz K, Maruhn J, Reinhard P G, Greiner W 1995 Nucl. Phys. A 590 680Google Scholar

    [46]

    Bonneau L, Quentin P, Samsœn D 2004 Eur. Phys. J. A 21 391Google Scholar

    [47]

    Ryssens W, Scamps G, Goriely S, Bender M 2022 Eur. Phys. J. A 50 246

    [48]

    Ryssens W, Scamps G, Goriely S, Bender M 2023 Eur. Phys. J. A 59 96Google Scholar

    [49]

    Lu B N, Zhao J, Zhao E G, Zhou S G 2014 Phys. Rev. C 89 014323Google Scholar

    [50]

    马中骐 2006 物理学中的群论(北京: 科学出版社) 第22页

    Ma Z Q 2006 Group Theory in Physics (Peking: Science Press) p22

    [51]

    Ren Z X, Zhang S Q, Meng J 2017 Phys. Rev. C 95 024313Google Scholar

    [52]

    Li B, Ren Z X, Zhao P W 2020 Phys. Rev. C 102 044307Google Scholar

    [53]

    Xu F F, Li B, Ren Z X, Zhao P W 2024 Phys. Rev. C 109 014311

    [54]

    Ring P 1996 Prog. Part. Nucl. Phys. 37 193Google Scholar

    [55]

    Ren Z X, Zhao P W 2020 Phys. Rev. C 102 021301Google Scholar

    [56]

    Vretenar D, Afanasjev A, Lalazissis G, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [57]

    Meng J, Peng J, Zhang S Q, Zhao P W 2013 Front. Phys. 8 55Google Scholar

    [58]

    Ren Z X, Zhang S Q, Zhao P W, N I, Maruhn J A, Meng J 2019 Sci. China Phys. Mech. Astron. 62 112062Google Scholar

    [59]

    Ren Z X, Zhao P W, Zhang S Q, Meng J 2020 Nucl. Phys. A 996 121696Google Scholar

    [60]

    Xu F F, Li B, Ring P, Zhao P W 2024 Phys. Lett. B 856 138893Google Scholar

    [61]

    Ren Z X, Zhao P W, Meng J 2022 Phys. Rev. C 105 L011301

    [62]

    Li B, Zhao P W, Meng J 2024 Phys. Lett. B 856 138877Google Scholar

    [63]

    Xu F F, Wang Y K, Wang Y P, Ring P, Zhao P W 2024 Phys. Rev. Lett. 133 022501Google Scholar

    [64]

    Zhao P W, Li Z P, Yao J M, Meng J 2010 Phys. Rev. C 82 054319Google Scholar

    [65]

    Yang Y L, Wang Y K, Zhao P W, Li Z P 2021 Phys. Rev. C 104 054312Google Scholar

    [66]

    Yang Y L, Zhao P W, Li Z P 2023 Phys. Rev. C 107 024308Google Scholar

    [67]

    Ryssens W, Hellemans V, Bender M, Heenen P H 2015 Comput. Phys. Commun. 190 231Google Scholar

    [68]

    Bender M, Rutz K, Reinhard P, Maruhn J A 2000 Eur. Phys. J. A 8 59Google Scholar

    [69]

    Staszczak A, Stoitsov M, Baran A, Nazarewicz W 2010 Eur. Phys. J. A 46 85Google Scholar

    [70]

    Wang M, Huang W, Kondev F, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [71]

    Kondev F, Wang M, Huang W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [72]

    Wang M, Audi G, Kondev F, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [73]

    Agbemava S E, Afanasjev A V, Ray D, Ring P 2014 Phys. Rev. C 89 054320Google Scholar

    [74]

    Ring P, Schuck P 1980 The Nuclear Many-Body Problem (Heidelberg: Springer Berlin) pp244–279

    [75]

    Capote R, Herman M, Obložinský P, Young P, Goriely S, Belgya T, Ignatyuk A, Koning A, Hilaire S, Plujko V, Avrigeanu M, Bersillon O, Chadwick M, Fukahori T, Ge Z, Han Y, Kailas S, Kopecky J, Maslov V, Reffo G, Sin M, Soukhovitskii E, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [76]

    Singh B, Zywina R, Firestone R B 2002 Nucl. Data Sheets 97 241Google Scholar

  • [1] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , doi: 10.7498/aps.67.20172022
    [2] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , doi: 10.7498/aps.65.048101
    [3] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究.  , doi: 10.7498/aps.62.138401
    [4] 张毅. 相对论性力学系统的Birkhoff对称性与守恒量.  , doi: 10.7498/aps.61.214501
    [5] 王霞, 王自霞, 吕浩, 赵秋玲. 全息干涉光学格点一到三维空间维度的简捷变换.  , doi: 10.7498/aps.59.4656
    [6] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , doi: 10.7498/aps.59.7452
    [7] 张民仓. 相对论性非球谐振子势场中的赝自旋对称性.  , doi: 10.7498/aps.58.61
    [8] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , doi: 10.7498/aps.57.6265
    [9] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , doi: 10.7498/aps.55.171
    [10] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性.  , doi: 10.7498/aps.54.2985
    [11] 张 毅, 葛伟宽. 相对论性力学系统的Mei对称性导致的新守恒律.  , doi: 10.7498/aps.54.1464
    [12] 贾利群. 转动系统的相对论性分析静力学理论.  , doi: 10.7498/aps.52.1039
    [13] 方建会, 闫向宏, 陈培胜. 相对论力学系统的形式不变性与Noether对称性.  , doi: 10.7498/aps.52.1561
    [14] 方建会, 陈培胜, 张 军, 李 红. 相对论力学系统的形式不变性与Lie对称性.  , doi: 10.7498/aps.52.2945
    [15] 傅景礼, 陈立群, 谢凤萍. 相对论性Birkhoff系统的对称性摄动及其逆问题.  , doi: 10.7498/aps.52.2664
    [16] 罗绍凯, 傅景礼, 陈向炜. 转动系统相对论性Birkhoff动力学的基本理论.  , doi: 10.7498/aps.50.383
    [17] 方建会, 赵嵩卿. 相对论性转动变质量系统的Lie对称性与守恒量.  , doi: 10.7498/aps.50.390
    [18] 傅景礼, 王新民. 相对论性Birkhoff系统的Lie对称性和守恒量.  , doi: 10.7498/aps.49.1023
    [19] 赵中新, 李家明. 非相对论性和相对论性原子组态相互作用理论——激发能量和辐射跃迁几率.  , doi: 10.7498/aps.34.1469
    [20] 张宗燧. 库伦作用的相对论性.  , doi: 10.7498/aps.8.123
计量
  • 文章访问数:  138
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-12
  • 修回日期:  2025-10-16
  • 上网日期:  2025-12-03

/

返回文章
返回
Baidu
map