搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自发单质子放射性核半衰期数据的理论计算

王翰林 王震 任中洲

引用本文:
Citation:

自发单质子放射性核半衰期数据的理论计算

王翰林, 王震, 任中洲

Theoretical calculations on the half-lives of spontaneous one-proton radioactivity

WANG Hanlin, WANG Zhen, REN Zhongzhou
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 核子滴线外的不稳定原子核的研究是探测极端质子-中子比体系中核子相互作用与核结构的重要手段, 其中质子滴线外的大量原子核以单质子放射性作为主要的衰变模式. 使用形变的Woods-Saxon势和自旋-轨道耦合相互作用与多极展开的形变Coulomb势, 构造了质子-子核两体相互作用, 并基于量子隧穿模型和微观的Gamow态理论, 以首个被实验发现的基态质子放射核之一的151Lu为例, 展示了理论模型的计算过程, 之后系统性地计算了目前实验观测到的大量质子放射性核的半衰期数据, 并在使用不同核数据的情况下, 对结果与实验值的相符性进行了对比, 评估了质子放射性对衰变能和谱因子数据的依赖性. 结果表明质子放射性对衰变能的依赖程度较高. 此外, 基于现有的实验观测结果, 对下方相邻的fpg壳层中可能存在的一些更轻的质子放射核的半衰期进行了理论预言. 以上计算结果被汇总为了目前比较全面地包括现有的质子放射核(50 < Z < 84) 和理论预言的质子放射核(30 < Z < 50) 半衰期的数据集, 为实验上进一步探索质子滴线提供了理论参考. 本文数据集可在https://www.doi.org/10.57760/sciencedb.27551中访问获取.
    The study of unstable nuclei beyond the nucleon drip line is an important method to study the nuclear interaction and structure in the extremely neutron- or proton-rich system, and various nuclides beyond the proton drip line mainly decay by spontaneous one-proton emission. Using the deformed Woods-Saxon potential, spin-orbit potential and the expanded Coulomb potential to construct the daughter-proton potential, based on the quantum tunneling model and the microscopic Gamow state theory, the half-lives data of various proton emitters are systematically calculated. By using nuclear data from different source and comparing to experiments, the dependence of proton emission on decay energy and spectroscopic factors is evaluated. Additionally, based on previous observations, the half-life of the possibly lighter proton emitter in the fpg-shell below has been theoretically predicted. Our results are compiled into a comprehensive dataset of half-lives for both experimentally confirmed emitters (50 < Z < 84) and theoretically predicted emitters (30 < Z < 50), providing a useful reference for future experimental investigations related to the proton drip line. The datasets presented in this paper, including our results of calculation, are openly available at https://www.doi.org/10.57760/sciencedb.27551.
  • 图 1  球形情况下151Lu质子发射核中的质子-子核相互作用势与Gamow态质子波函数. 实线代表势能的不同部分, 波函数实部(绿色虚线)和虚部(紫色虚线)对应右侧坐标轴, 其能量的实部如黄色水平虚线所示

    Fig. 1.  The daughter-proton interaction potential in 151Lu in the spherical case and the Gamow state wave function of the emitted proton. The solid lines denotes different parts of potential, while the real part (green dashed line) and the imaginary part (purple dashed line) of the wave function are corresponding to the right axis with the real part of the energy as the yellow dotted horizontal line.

    图 2  151Lu核中子核Woods-Saxon半径的形变(虚线) 与母核质子放射性衰变宽度的角分布(实线)

    Fig. 2.  The angular distrbution of the deformed radius (dashed line) and the decay width (solid line).

    图 3  本文的理论模型在实验衰变能和FRDM衰变能参数下对半衰期的计算误差 (a) 使用拟合得到的谱因子; (b) 使用RMF理论得到的谱因子. 阴影部分代表对数下的计算值与实验值相差在1以内

    Fig. 3.  Errors of the theoretical model in experimental and FRDM decay energies: (a) using the spectroscopic factor by fitting; (b) using the spectroscopic factor of RMF theory. The shaded region indicates that the difference between our calculated value and the experimental value under logarithmic conditions is smaller than 1.

    图 4  本文的计算结果和其他理论的结果(包括解析的半经典计算[11]与拓展的Geiger-Nuttall定律[44])与实验值的对比. 横轴代表母核的核子数, 纵轴代表各组半衰期计算结果与实验值的对数的差值

    Fig. 4.  The difference between this work and other theoretical methods (including an analytic semiclassical solution[11] and the new Geiger-Nuttall law[44]). The horizontal axis denotes the nucleon number of the parent nucleus, while the vertical axis illustrates the difference between the logarithms of the calculated and experimental half-lives.

    图 5  本文理论预言的质子数30到50的一系列质子放射核的半衰期, 及其与(a)母核质子数和(b)实验衰变能之间的关系, 其中与衰变能的关系符合Geiger-Nuttal定律, 如图中虚线所示

    Fig. 5.  The predicted half-lives for serial proton emitters in the range from $ Z = 30 $ to $ Z = 50 $ in this work, and the dependence on (a) the proton number of parent nuclei and (b) the decay energy, which is consistent to the Geiger-Nuttal law as the dashed lines.

    表 1  一些质子放射核的相关实验和理论数据, 其中质子轨道为球形极限下发射质子占据的轨道, $ Q_{\rm{exp}} $和$ Q_{\rm{FRDM}} $分别为实验(除表中的特别标注外, 由NNDC和AME 2020中列出的实验值得到[3,40,41]) 和FRDM理论[39]得到的衰变能, $ \beta_{2, 4} $为形变参数, $ T_{1/2}^{\rm{exp}} $为实验半衰期以10为底的对数, 最后两列为使用RMF和形变依赖的拟合两种方法得到的谱因子

    Table 1.  Experimental data of various proton emitters, where the orbital is occupied in the spherical limit, $ Q_{\rm{exp}} $ and $ Q_{\rm{FRDM}} $ are the decay energy by experiments (obtained from NNDC and AME 2020 except for those specifically marked values) and FRDM theory, $ \beta_{2, 4} $ are deformation parameters, $ T_{1/2}^{\rm{exp}} $ is the experimental half-life, and the last two columns denote the spectroscopic factors calculated by RMF and deformation-dependent fitting.

    母核 $ n\ell_j $ $ Q_{\rm{exp}} $/MeV $ Q_{\rm{FRDM}} $/MeV $ \beta_2 $ $ \beta_4 $ $ \log_{10}T_{1/2}^{\rm{exp}} $ $ S_p^{\rm{RMF}} $ $ S_p^{\rm{fit}} $
    109I $ 2 d_{5/2} $ 0.820 0.821 0.139 0.056 –4.029 0.726 0.099
    112Cs $ 2 d_{5/2} $ 0.816 0.901 0.185 0.052 –3.310 0.369 0.063
    113Cs $ 2 d_{3/2} $ 0.973 0.681 0.195 0.054 –4.752 0.373 0.057
    117La $ 2 d_{3/2} $ 0.820 0.581 0.282 0.106 –1.602 0.311 0.024
    121Pr $ 2 d_{3/2} $ 0.890 0.671 0.304 0.087 –2.000 0.122 0.019
    130Eu $ 2 d_{3/2} $ 1.028[45] 1.111 0.331 0.018 –3.046 0.816 0.014
    131Eu $ 2 d_{3/2} $ 0.947 0.961 0.331 0.018 –1.699 0.029 0.014
    135Tb $ 2 f_{7/2} $ 1.188 1.131 0.322 –0.037 –3.027 0.028 0.016
    140Ho $ 2 f_{7/2} $ 1.094 0.881 0.276 –0.047 –2.222 0.952 0.025
    141Ho $ 2 f_{7/2} $ 1.177 0.761 0.253 –0.039 –2.387 0.008 0.032
    141Hom $ 3 s_{1/2} $ 1.243 0.827 0.253 –0.039 –5.137 0.048 0.032
    144Tm $ 1 h_{11/2} $ 1.712 1.201 0.254 –0.064 –5.721 0.558[43] 0.031
    145Tm $ 1 h_{11/2} $ 1.736 1.141 0.231 –0.068 –5.499 0.580 0.039
    146Tm $ 1 h_{11/2} $ 1.196 0.951 0.219 –0.057 –1.125 0.962 0.045
    146Tmm $ 1 h_{11/2} $ 1.120 0.833 0.219 –0.057 –0.703 0.962 0.045
    147Tm $ 1 h_{11/2} $ 1.059 0.661 –0.187 –0.022 0.587 0.581 0.187
    147Tmm $ 2 d_{3/2} $ 1.127 0.729 –0.187 –0.022 –3.444 0.953 0.187
    150Lu $ 1 h_{11/2} $ 1.270 1.001 –0.167 –0.035 –1.197 0.497 0.199
    151Lu $ 1 h_{11/2} $ 1.241 1.001 –0.167 –0.035 –0.896 0.490 0.199
    151Lum $ 2 d_{3/2} $ 1.319 1.079 –0.167 –0.035 –4.796 0.858 0.199
    155Ta $ 1 h_{11/2} $ 1.453 1.191 0.021 0.000 –2.538 0.422 0.324
    156Ta $ 2 d_{3/2} $ 1.020 0.591 –0.063 0.001 –0.842 0.761 0.274
    156Tam $ 1 h_{11/2} $ 1.122 0.693 –0.063 0.001 0.933 0.493 0.274
    157Ta $ 3 s_{1/2} $ 0.935 0.771 –0.084 0.014 –0.527 0.797 0.257
    159Rem $ 1 h_{11/2} $ 1.720 1.301 0.085 0.003 –4.665 0.387[43] 0.171
    160Re $ 2 d_{3/2} $ 1.267 0.821 0.107 0.004 –3.045 0.507 0.137
    161Re $ 3 s_{1/2} $ 1.197 0.761 0.128 0.018 –3.357 0.892 0.111
    161Rem $ 1 h_{11/2} $ 1.321 0.885 0.128 0.018 –0.678 0.290 0.111
    164Irm $ 1 h_{11/2} $ 1.814 1.928 0.118 –0.007 –4.155 0.339[43] 0.123
    165Irm $ 1 h_{11/2} $ 1.740 1.311 0.129 0.006 –3.462 0.187 0.110
    166Ir $ 2 d_{3/2} $ 1.152 0.711 0.140 –0.005 –0.824 0.415 0.098
    166Irm $ 1 h_{11/2} $ 1.324 0.883 0.140 –0.005 –0.076 0.188 0.098
    167Ir $ 3 s_{1/2} $ 1.070 0.731 0.151 –0.004 –1.028 0.912 0.088
    167Irm $ 1 h_{11/2} $ 1.245 0.906 0.151 –0.004 0.848 0.183 0.088
    170Au $ 2 d_{3/2} $ 1.472 0.981 0.129 0.007 –3.493 0.511 0.110
    170Aum $ 1 h_{11/2} $ 1.757 1.266 0.129 0.007 –2.973 0.137[43] 0.110
    171Au $ 3 s_{1/2} $ 1.448 0.961 0.129 –0.006 –4.770 0.848 0.110
    171Aum $ 1 h_{11/2} $ 1.707 1.220 0.129 –0.006 –2.654 0.087 0.110
    176Tl $ 3 s_{1/2} $ 1.265 1.031 –0.115 –0.03 –2.284 0.926 0.233
    177Tl $ 3 s_{1/2} $ 1.156 0.981 –0.115 –0.03 –1.176 0.733 0.233
    177Tlm $ 1 h_{11/2} $ 1.963 1.788 –0.115 –0.03 –3.346 0.022 0.233
    185Bi $ 3 s_{1/2} $ 1.598[46] 1.611 0.000 0.012 –4.191 0.011 0.400
    下载: 导出CSV

    表 2  本文的理论模型对一些质子放射核的半衰期的计算值, 使用表 1中的两组谱因子和衰变能. 第二、三列半衰期使用实验衰变能[3,40,41], 第四、五列的半衰期使用由FRDM理论[39]得到的衰变能$ Q_{\rm{FRDM}} $计算, 最后两列展示了其他理论计算得到的结果

    Table 2.  Data calculated by our theoretical model, using different spectroscopic factors and decay energies in Table 1. The second and third columns correspond to the experimental decay energy[3,40,41], while the fourth and fifth columns correspond to the decay energy obtained by FRDM[39] as $ Q_{\rm{FRDM}} $. The last two columns are the results of other theoretical works.

    母核 基于实验衰变能 基于FRDM衰变能 其他理论研究结果
    $ \log_{10}T_{1/2}^{\rm{RMF}} $ $ \log_{10}T_{1/2}^{\rm{fit}} $ $ \log_{10}T_{1/2}^{\rm{RMF}} $ $ \log_{10}T_{1/2}^{\rm{fit}} $ Ref. [11] Ref. [44]
    109I –4.673 –3.809 –4.688 –3.824 –4.098 –3.507
    112Cs –3.587 –2.816 –4.823 –4.053 –3.261 –2.844
    113Cs –5.746 –4.928 –1.171 –0.353 –5.599 –4.796
    117La –2.884 –1.765 2.101 3.219 –2.699 –2.072
    121Pr –2.840 –2.032 1.147 1.955 –3.020 –2.552
    130Eu –4.218 –2.468 –5.211 –3.461 –3.470 –3.121
    131Eu –1.680 –1.379 –1.876 –1.575 –2.354 –2.141
    135Tb –3.279 –3.033 –2.652 –2.405 –3.647 –3.380
    140Ho –3.123 –1.545 –0.031 1.547 –1.909 –1.902
    141Ho –2.013 –2.611 4.341 3.743 –2.878 –2.811
    141Hom –5.188 –5.007 0.549 0.729 –5.588 –5.783
    144Tm –5.435 –4.185 –1.044 0.206 –4.686 –5.216
    145Tm –5.603 –4.436 –0.355 0.812 –4.835 –5.401
    146Tm –1.214 0.120 2.058 3.393 –0.204 –1.272
    146Tmm –0.313 1.022 4.129 5.463 0.702 –0.999
    147Tm 0.725 1.218 8.322 8.814 0.408 0.681
    147Tmm –3.591 –2.884 3.079 3.786 –3.728 –2.455
    150Lu –1.148 –0.750 2.250 2.647 –1.530 –1.199
    151Lu –0.844 –0.452 2.248 2.639 –1.211 –0.911
    151Lum –5.053 –4.418 –2.304 –1.669 –5.213 –3.899
    155Ta –2.318 –2.204 1.191 0.509 –2.764 –2.397
    156Ta –0.986 –0.542 8.836 9.280 –0.901 –0.180
    156Tam 1.177 1.433 9.178 9.434 0.839 1.101
    157Ta –0.299 0.193 2.923 3.416 –0.505 –0.797
    159Rem –3.966 –3.610 –0.290 0.066 –4.399 –4.586
    160Re –3.136 –2.568 3.681 4.250 –3.438 –2.450
    161Re –3.439 –2.533 3.901 4.807 –3.575 –3.277
    161Rem –0.415 0.003 5.771 6.189 –0.910 –0.729
    164Irm –4.152 –3.711 –4.890 –4.448 –4.577 –4.247
    165Irm –3.392 –3.161 0.413 0.645 –4.051 –3.550
    166Ir –1.080 –0.454 7.189 7.814 –1.386 –0.801
    166Irm 0.255 0.537 6.672 6.953 –0.370 –0.344
    167Ir –1.142 –0.126 5.450 6.465 –1.186 –1.347
    167Irm 1.142 1.460 6.213 6.530 0.532 0.546
    170Au –4.130 –3.462 2.053 2.720 –4.331 –3.254
    170Aum –2.954 –2.857 1.592 1.688 –3.693 –3.330
    171Au –4.954 –4.066 1.332 2.220 –5.028 –4.460
    171Aum –2.390 –2.491 2.344 2.243 –3.313 –2.992
    176Tl –2.470 –1.871 0.799 1.397 –2.451 –2.361
    177Tl –0.978 –0.481 1.742 2.239 –1.035 –1.263
    177Tlm –3.149 –4.174 –1.962 –2.988 –4.611 –3.543
    185Bi –3.383 –4.944 –3.495 –5.055 –5.214 –4.730
    下载: 导出CSV

    表 3  fpg壳层中可能的质子放射核的半衰期的理论预言. 其中衰变能Q根据NNDC数据库和AME 2020质量表中的单质子分离能实验值计算得到[3,40,41] (#上标表示该数值为AME 2020中的评价值), 形变参数$ \beta_{2, 4} $和谱因子$ S_p^{\rm{RHB}} $则分别由FRDM[39]和RHB[48]的计算结果得到. 最后一列为本文预言的质子放射性半衰期(以秒为单位) 的对数

    Table 3.  The theoretical prediction on the half-lives of fpg-shell possible proton emitters. The decay energy Q is taken from the proton separation energy in NNDC and AME 2020[3,40,41] (the superscript # denotes values that are not obtained from purely experimental data in AME 2020), and the deformation parameters $ \beta_{2, 4} $ and spectroscopic factor $ S_p^{\rm{RHB}} $ are obtained by the results of FRDM[39] and RHB[48], respectively. The predicted half-lives using our model are listed in the last column.

    母核 质子轨道 Q / MeV $ \beta_2 $ $ \beta_4 $ $ S_p^{\rm{RHB}} $ $ \log_{10}T_{1/2}^{\rm{pred}} $
    60Ga $ 2 p_{3/2} $ 0.340# 0.106 0.041 0.53 –5.140
    63As $ 2 p_{3/2} $ 1.350# 0.184 0.014 0.61 –15.627
    68Br $ 1 f_{5/2} $ 0.500# 0.220 –0.082 0.80 –5.071
    69Br $ 1 f_{5/2} $ 0.640 0.233 –0.106 0.78 –7.489
    72Rb $ 1 f_{5/2} $ 0.710# –0.357 0.022 0.83 –7.713
    73Rb $ 1 f_{5/2} $ 0.640 –0.366 0.025 0.83 –6.751
    75Y $ 1 g_{9/2} $ 1.720# 0.401 0.001 0.92 –12.882
    76Y $ 1 g_{9/2} $ 1.080# 0.402 –0.012 0.84 –9.505
    81Nb $ 1 g_{9/2} $ 1.110# 0.430 –0.047 0.12 –8.391
    84Tc $ 1 f_{5/2} $ 1.350# 0.492 –0.021 0.90 –11.544
    88Rh $ 1 g_{9/2} $ 1.580# –0.243 –0.101 0.73 –10.976
    92Ag $ 1 g_{9/2} $ 1.350# –0.011 0.000 0.56 –9.074
    93Ag $ 1 g_{9/2} $ 1.090# 0.000 0.000 0.39 –6.967
    96In $ 1 g_{9/2} $ 1.680# 0.053 0.001 0.49 –10.374
    97In $ 1 g_{9/2} $ 0.890# –0.021 0.000 0.19 –3.965
    下载: 导出CSV
    Baidu
  • [1]

    任中洲, 徐躬耦 1991 40 1229Google Scholar

    Ren Z Z, Xu G O 1991 Acta Phys. Sin. 40 1229Google Scholar

    [2]

    丁斌刚, 鲁定辉, 张大立 2007 56 6905Google Scholar

    Ding B G, Lu D H, Zhang D L 2007 Acta Phys. Sin. 56 6905Google Scholar

    [3]

    National Nuclear Data Center, https://www.nndc.bnl.gov

    [4]

    Sarmiento L G, Roger T, Giovinazzo J, Brown B A, Blank B, Rudolph D, Kankainen A, Alvarez-Pol H, Raj A A, Ascher P, Block M, Caamaño-Fresco M, Caceres L, Canete L, Cox D M, Eronen T, Fahlander C, Fernández-Domínguez B, Forsberg U, Lois-Fuentes J, Gerbaux M, Gerl J, Golubev P, Grévy S, Grinyer G F, Habermann T, Hakala J, Jokinen A, Kamalou O, Kojouharov I, Kolhinen V S, Koponen J, Kurz N, Lalović N, Lorenz C, Mauss B, Mentana A, Moore I D, Ortega Moral A, Pancin J, Papadakis P, Pibernat J, Piot J, Pohjalainen I, Reinikainen J, Rinta-Antila S, Schaffner H, Sorlin O, Stodel C, Thomas J C, Versteegen M, Voss A 2023 Nat. Commun. 14 5961Google Scholar

    [5]

    Giovinazzo J, Roger T, Blank B, Rudolph D, Brown B A, Alvarez-Pol H, Arokia Raj A, Ascher P, Caamaño-Fresco M, Caceres L, Cox D M, Fernández-Domínguez B, Lois-Fuentes J, Gerbaux M, Grévy S, Grinyer G F, Kamalou O, Mauss B, Mentana A, Pancin J, Pibernat J, Piot J, Sorlin O, Stodel C, Thomas J C, Versteegen M 2021 Nat. Commun. 12 4805Google Scholar

    [6]

    Ye Y L, Yang X F, Sakurai H, Hu B S 2024 Nat. Rev. Phys. 7 21Google Scholar

    [7]

    Karny M, Rykaczewski K, Grzywacz R K, Batchelder J C, Bingham C R, Goodin C, Gross C J, Hamilton J H, Korgul A, Królas W, Liddick S N, Li K, Maier K H, Mazzocchi C, Piechaczek A, Rykaczewski K, Schapira D, Simpson D, Tantawy M N, Winger J A, Yu C H, Zganjar E F, Nikolov N, Dobaczewski J, Kruppa A T, Nazarewicz W, Stoitsov M V 2008 Phys. Lett. B 664 52Google Scholar

    [8]

    Zhang W, Cederwall B, Aktas O, Liu X, Ertoprak A, Nyberg A, Auranen K, Alayed B, Badran H, Boston H, Doncel M, Forsberg U, Grahn T, Greenlees P T, Guo S, Heery J, Hilton J, Jenkins D, Julin R, Juutinen S, Luoma M, Neuvonen O, Ojala J, Page R D, Pakarinen J, Partanen J, Paul E S, Petrache C, Rahkila P, Ruotsalainen P, Sandzelius M, Sarén J, Szwec S, Tann H, Uusitalo J, Wadsworth R 2022 Commun. Phys. 5 285Google Scholar

    [9]

    Auranen K, Seweryniak D, Albers M, Ayangeakaa A D, Bottoni S, Carpenter M, Chiara C J, Copp P, David H M, Doherty D T, Harker J, Hoffman C R, Janssens R V F, Khoo T L, Kuvin S A, Lauritsen T, Lotay G, Rogers A M, Scholey C, Sethi J, Talwar R, Walters W B, Woods P J, Zhu S 2019 Phys. Lett. B 792 187Google Scholar

    [10]

    Jackson K P, Cardinal C U, Evans H C, Jelley N A, Cerny J 1970 Phys. Lett. B 33 281

    [11]

    Delion D S, Dumitrescu A 2021 Phys. Rev. C 103 054325Google Scholar

    [12]

    Ni D D, Ren Z Z 2015 Annals Phys. 358 108Google Scholar

    [13]

    Zhang D M, Qi L J, Gui H F, Luo S, He B, Wu X J, Li X H 2023 Phys. Rev. C 108 024318Google Scholar

    [14]

    Qian Y B, Ren Z Z 2016 Eur. Phys. J. A 52 68Google Scholar

    [15]

    Cheng J H, Pan X, Zou Y T, Li X H, Zhang Z, Chu P C 2020 Eur. Phys. J. A 56 273Google Scholar

    [16]

    Routray T R, Mishra A, Tripathy S K, Behera B, Basu D N 2012 Eur. Phys. J. A 48 77Google Scholar

    [17]

    Esbensen H, Davids C N 2000 Phys. Rev. C 63 014315Google Scholar

    [18]

    Ferreira L S, Maglione E, Ring P 2011 Phys. Lett. B 701 508Google Scholar

    [19]

    Tsunoda N, Otsuka T, Takayanagi K, Shimizu N, Suzuki T, Utsuno Y, Yoshida S, Ueno H 2020 Nature 587 66Google Scholar

    [20]

    Jain A, Parab P, Saxena G, Aggarwal M 2024 Sci. Rep. 14 28368Google Scholar

    [21]

    Wang Z, Bai D, Ren Z Z 2022 Phys. Rev. C 105 024327Google Scholar

    [22]

    Wang Z, Ren Z Z 2022 Phys. Rev. C 106 024311

    [23]

    邢凤竹, 乐先凯, 王楠, 王艳召 2025 74 112301Google Scholar

    Xing F Z, Le X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301Google Scholar

    [24]

    Wang Z, Ren Z Z 2023 Phys. Rev. C 108 024306

    [25]

    圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发 2014 63 162302Google Scholar

    Sheng Z Q, Shu L P, Meng Y, Hu J G, Qian J F 2014 Acta Phys. Sin. 63 162302Google Scholar

    [26]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta Phys. Sin. 71 062301Google Scholar

    [27]

    Delion D S, Ghinescu S 2025 J. Phys. G: Nucl. Part. Phys. 52 055105Google Scholar

    [28]

    Maglione E, Ferreira L S, Liotta R J 1998 Phys. Rev. Lett. 81 538Google Scholar

    [29]

    Buck B, Merchant A C, Perez S M 1992 Phys. Rev. C 45 1688

    [30]

    Talou P, Strottman D, Carjan N 1999 Phys. Rev. C 60 054318Google Scholar

    [31]

    Bhagwat A, Viñas X, Centelles M, Schuck P, Wyss R 2010 Phys. Rev. C 81 044321Google Scholar

    [32]

    Wu Z Y, Qi C, Wyss R, Liu H L 2015 Phys. Rev. C 92 024306

    [33]

    Bykhalo G I, Orlin V N, Stopani K A arXiv: 2107.08245[nucl-th]

    [34]

    Sheng Z Q, Fan G W, Qian J F, Hu J G 2015 Eur. Phys. J. A 51 40Google Scholar

    [35]

    Delion D S 2010 Theory of particle and cluster emission (Springer

    [36]

    Åberg S, Semmes P B, Nazarewicz W 1997 Phys. Rev. C 56 1762

    [37]

    Delion D S, Liotta R J, Wyss R 2006 Phys. Rep. 424 113Google Scholar

    [38]

    Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [39]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 Atom. Data Nucl. Data Tables 109-110 1Google Scholar

    [40]

    Huang W J, Wang M, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030002Google Scholar

    [41]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [42]

    Zhang H F, Wang Y J, Dong J M, Li J Q, Scheid W 2010 J. Phys. G: Nucl. Part. Phys. 37 085107Google Scholar

    [43]

    Soylu A, Koyuncu F, Gangopadhyay G, Dehghani V, Alavi S A 2021 Chin. Phys. C 45 044108Google Scholar

    [44]

    Chen J L, Xu J Y, Deng J G, Li X H, He B, Chu P C 2019 Eur. Phys. J. A 55 214Google Scholar

    [45]

    Davids C N, Woods P J, Mahmud H, Davinson T, Heinz A, Ressler J J, Schmidt K, Seweryniak D, Shergur J, Sonzogni A A, Walters W B 2004 Phys. Rev. C 69 011302Google Scholar

    [46]

    Poli G L, Davids C N, Woods P J, Seweryniak D, Carpenter M P, Cizewski J A, Davinson T, Heinz A, Janssens R V F, Lister C J, Ressler J J, Sonzogni A A, Uusitalo J, Walters W B 2001 Phys. Rev. C 63 044304

    [47]

    Čeliković I, Lewitowicz M, Gernhäuser R, Krücken R, Nishimura S, Sakurai H, Ahn D S, Baba H, Blank B, Blazhev A, Boutachkov P, Browne F, de France G, Doornenbal P, Faestermann T, Fang Y, Fukuda N, Giovinazzo J, Goel N, Górska M, Ilieva S, Inabe N, Isobe T, Jungclaus A, Kameda D, Kim Y K, Kwon Y K, Kojouharov I, Kubo T, Kurz N, Lorusso G, Lubos D, Moschner K, Murai D, Nishizuka I, Park J, Patel Z, Rajabali M, Rice S, Schaffner H, Shimizu Y, Sinclair L, Söderström P A, Steiger K, Sumikama T, Suzuki H, Takeda H, Wang Z, Watanabe H, Wu J, Xu Z 2016 Phys. Rev. Lett. 116 162501Google Scholar

    [48]

    Lalazissis G A, Vretenar D, Ring P 2001 Nucl. Phys. A 679 481Google Scholar

    [49]

    Xu X D, Mukha I, Grigorenko L V, Scheidenberger C, Acosta L, Casarejos E, Chudoba V, Ciemny A A, Dominik W, Duénas-Díaz J, Dunin V, Espino J M, Estradé A, Farinon F, Fomichev A, Geissel H, Golubkova T A, Gorshkov A, Janas Z, Kamiński G, Kiselev O, Knöbel R, Krupko S, Kuich M, Litvinov Y A, Marquinez-Durán G, Martel I, Mazzocchi C, Nociforo C, Ordúz A K, Pfützner M, Pietri S, Pomorski M, Prochazka A, Rymzhanova S, Sánchez-Benítez A M, Sharov P, Simon H, Sitar B, Slepnev R, Stanoiu M, Strmen P, Szarka I, Takechi M, Tanaka Y K, Weick H, Winkler M, Winfield J S 2018 Phys. Rev. C 97 034305Google Scholar

    [50]

    Xu X D, Mukha I, Li J G, Wang S M, Acosta L, Bajzek M, Casarejos E, Cortina-Gil D, Espino J M, Fomichev A, Geissel H, Gómez-Camacho J, Grigorenko L V, Kiselev O, Korsheninnikov A A, Kostyleva D, Kurz N, Litvinov Y A, Martel I, Nociforo C, Pfützner M, Rodríguez-Tajes C, Scheidenberger C, Stanoiu M, Sümmerer K, Weick H, Woods P J, Zhukov M V 2025 Phys. Rev. Lett. 135 022502Google Scholar

  • [1] 田榕赫, 杨东, 于伟翔, 黄小龙, 李小安, 石明松. 探测器高能伽马效率刻度用放射性核素56Co的衰变数据.  , doi: 10.7498/aps.74.20250743
    [2] 夏金戈, 李伟峰, 方基宇, 牛中明. 原子核β衰变寿命经验公式.  , doi: 10.7498/aps.73.20231653
    [3] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试.  , doi: 10.7498/aps.72.20230213
    [4] 周斌, 于全芝, 张宏斌, 张雪荧, 鞠永芹, 陈亮, 阮锡超. 80.5 MeV/u碳离子诱发铜靶的放射性剩余产物测量.  , doi: 10.7498/aps.70.20201503
    [5] 王世联, 李奇, 赵允刚, 张新军, 樊元庆, 王晓明, 贾怀茂, 陈占营, 刘蜀疆, 常印忠, 石建芳. 2020年6月北欧大气中微量134Cs, 137Cs和103Ru等放射性核素的技术分析.  , doi: 10.7498/aps.69.20201397
    [6] 田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平. 基于放射性气体源体积的虚拟源刻度技术.  , doi: 10.7498/aps.65.062901
    [7] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化.  , doi: 10.7498/aps.64.154101
    [8] 陈泽, 张小平, 杨洪应, 郑强, 陈娜娜, 支启军. 等待点N=82附近核素β-衰变寿命的研究.  , doi: 10.7498/aps.63.162301
    [9] 杨辰, 房超, 张建, 曹建主. 球床高温气冷堆燃料颗粒中放射性核素的累积释放份额研究.  , doi: 10.7498/aps.63.032802
    [10] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究.  , doi: 10.7498/aps.63.162302
    [11] 田自宁, 欧阳晓平, 曾鸣, 成智威. 积分中值定理在放射性氙样品γ谱效率刻度技术中的应用.  , doi: 10.7498/aps.62.162902
    [12] 金宝, 蔡军, 陈义学. 放射性核素铀在针铁矿中的占位研究.  , doi: 10.7498/aps.62.087101
    [13] 李凤, 马忠权, 孟夏杰, 殷晏庭, 于征汕, 吕鹏. 晶硅太阳电池中Fe-B对与少子寿命、陷阱浓度及内量子效率的相关性.  , doi: 10.7498/aps.59.4322
    [14] 杨介甫. 关于用放射性同位素传感液位的严格线性刻度和放射源的强度分布.  , doi: 10.7498/aps.34.205
    [15] 吴丹迪, 李铁忠, 张肇西, 黄涛, 谢诒成. 场流关系和新粒子的衰变宽度.  , doi: 10.7498/aps.25.78
    [16] 高美娟, 陈金全, 施士元. 对关联对于Pb208附近α衰变的影响——α约化宽度的绝对值的计算.  , doi: 10.7498/aps.21.1725
    [17] 宋行长. 超子的非轻子衰变与么正对称性.  , doi: 10.7498/aps.20.1048
    [18] 罗辽复, 陆埮, 杨国琛. μ介子寿命与μ-e对称性的实验限度.  , doi: 10.7498/aps.20.1101
    [19] 彭桓武. 寿命关联实验的重要性.  , doi: 10.7498/aps.18.165
    [20] 超子及K介子衰变的分枝比和平均寿命间的比例.  , doi: 10.7498/aps.15.63
计量
  • 文章访问数:  295
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-10
  • 修回日期:  2025-11-11
  • 上网日期:  2025-11-12

/

返回文章
返回
Baidu
map