搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半球形表面周期微结构制造与激光诱导击穿光谱信号增强机理

姜银花 王增辉 李钰丰 陈钰琦 李润华

引用本文:
Citation:

半球形表面周期微结构制造与激光诱导击穿光谱信号增强机理

姜银花, 王增辉, 李钰丰, 陈钰琦, 李润华

Fabrication of semispherical periodic surface micro-structure and its laser-induced breakdown spectroscopy signal enhancement mechanism

JIANG Yinhua, WANG Zenghui, LI Yufeng, CHEN Yuqi, LI Runhua
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 为了探索在固体表面制作周期微结构的快速、低成本的新方法, 并了解表面周期微结构对激光诱导击穿光谱(LIBS)信号增强的物理机制, 本文利用200目的球形铜粉在聚氯乙烯片上压印出半球形表面周期微结构, 再利用电镀方法制作出复制有该微结构的镍板. 通过对比观测光滑表面镍板和带有半球形表面周期微结构的镍板不同的LIBS信号增强效果、测量其等离子体的温度和电子密度变化, 分析得出样品被照射表面积的增大是半球形表面周期微结构引起LIBS信号增强的主要原因. 与具有一定深度的圆柱形表面周期微结构的实验现象和信号增强机制进行对比分析, 表明微结构的深度有助于获得更好的信号增强效果, 为后续的微结构参数设计提供了有益的参考. 最后应用表面增强LIBS技术分析了水中的铅元素. 结果表明, 当前条件下, 带有半球形表面周期微结构的镍板与光滑表面的镍板相比, 基于Pb I 405.78 nm分析线, 铅的分析灵敏度可改善约23倍, 重复测量时信号强度的可重复性也获得了一定程度的改善.
    In order to develop a rapid and cost-effective new method to produce periodic microstructures on solid surfaces, and help to understand the physical mechanism of the enhancement of laser-induced breakdown spectroscopy (LIBS) signals induced by periodic surface microstructures, in this work, spherical copper powder with about 74 μm in diameter is used to imprint semispherical periodic surface microstructures on polyvinyl chloride (PVC) sheets under a pressure of 15 T. A platinum conducting layer about 100 nm in thickness is coated on the PVC surface by using a vacuum sputter coater and then nickel plates with the replicated microstructures on one surface are prepared using electroplating method. The signal enhancement effect induced by micro-structured surface in LIBS is experimentally observed and compared with that achieved by using flat surface nickel plate, the temperature and electron density of the induced plasma are measured according to Boltzmann plot method and the Stark broadening of Hα line of hydrogen. By systematically analyzing these results, it is concluded that the main physical mechanism of the signal enhancement in LIBS caused by the hemispherical periodic surface microstructure is due to the increased surface area of the sample that can be irradiated by the laser beam, leading to an increase in the mass of the ablated sample material when compared with that of a flat surface irradiated by the same laser beam. Comparative analysis is also conducted with experimental phenomena and signal enhancement mechanisms of using cylindrical periodic surface microstructures with a certain depth (20 μm diameter, 15 μm depth and 40 μm period). It is found that the depth of the microstructure helps to achieve better signal enhancement effects. This provides useful references for subsequent microstructure parameter design in the future. Finally, lead in aqueous solution samples is detected with surface-enhanced LIBS (SENLIBS) technique, while Pb I 405.78 nm line is selected as the analytical line. In comparison with flat nickel substrates, 23-fold detection sensitivity and slightly improved signal reproducibility can be achieved using nickel substrates with hemispherical periodic surface microstructures. The results indicate that nickel plates with hemispherical periodic surface microstructure show better analytical performance than flat nickel plates in elemental analysis of aqueous solution samples by SENLIBS.
  • 图 1  电镀出的镍板表面SEM图 (a) 光滑表面镍板; (b) 微结构表面的镍板

    Fig. 1.  SEM images of the nickel plates prepared by electroplating method: (a) Flat surface nickel plate; (b) surface micro-structured nickel plate.

    图 2  LIBS实验装置图

    Fig. 2.  Experimental setup of LIBS in this work.

    图 3  两种不同表面的Ni靶的局部LIBS光谱, 图中的谱线都是镍的谱线 (a) 334—364 nm; (b) 430—550 nm

    Fig. 3.  Comparison of the recorded LIBS spectra of two Ni targets with different surface morphology, all lines are atomic lines of nickel: (a) 334–364 nm region; (b) 430–550 nm region.

    图 4  两种表面的Ni靶的等离子体的玻尔兹曼图

    Fig. 4.  Boltzmann plots of Ni plasma generated on targets with different surface morphology.

    图 5  等离子体中观测到的氢Hα谱线的洛伦兹拟合结果 (a)光滑表面Ni 靶; (b)半球形结构的Ni靶

    Fig. 5.  Lorentzian fitting results of the observed Hα line of hydrogen from plasma: (a) Flat surface Ni target; (b) Ni target with hemispherical micro-structure on its surface.

    图 6  连续20个激光脉冲在镍板表面烧蚀出的坑洞的扫描电镜图 (a) 光滑表面镍板; (b) 具有半球形表面微结构的镍板

    Fig. 6.  SEM images of the craters generated by consecutive 20 laser shots on the surfaces of different nickel plates: (a) Flat surface Ni plate; (b) Ni plate with hemispherical micro-structure on its surface.

    图 7  制造有直径20 μm、深15 μm、周期40 μm的圆柱形表面周期微结构镍板的扫描电镜图

    Fig. 7.  SEM image of a nickel plate fabricated with a periodic cylindrical surface micro-structure of 20 μm diameter, 15 μm depth and 40 μm period.

    图 8  基于两种不同镍板的SENLIBS技术记录的局部光谱对照图, 样品为水溶液, 其中铅元素的浓度为20 ppm (a) 380—410 nm的光谱; (b)局部放大后400—412 nm波段的光谱

    Fig. 8.  Comparison of spectra recorded in SENLIBS experiments, the sample is aqueous solution containing 20 ppm lead: (a) Spectra of 380–410 nm; (b) locally amplified spectra of 400–412 nm in order to show lines more clearly.

    表 1  图4中Ni原子谱线及对应的跃迁参数

    Table 1.  List of the selected Ni atomic lines in Fig.4 and the corresponding transition. parameters.

    λki/nmAki/(107 s–1)gkEk/eV
    367.4150.253.80
    373.6810.1453.74
    383.1690.1533.66
    440.1553.8116.01
    447.0481.976.17
    464.8662.496.09
    478.6541.8116.01
    498.0161.9116.09
    501.7592116.01
    503.5375.796.10
    511.5402.296.26
    547.6910.9534.09
    下载: 导出CSV
    Baidu
  • [1]

    Babushok V I, DeLucia Jr. F C, Gottfried J L, Munson C A, Miziolek A W 2006 Spectrochim. Acta B 61 999Google Scholar

    [2]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [3]

    郑培超, 李晓娟, 王金梅, 郑爽, 赵怀冬 2019 68 125202Google Scholar

    Zheng P C, Li X J, Wang J M, Zheng S, Zhao H D 2019 Acta Phys. Sin. 68 125202Google Scholar

    [4]

    Nassef O A, Elsayed-Ali H E 2005 Spectrochim. Acta B 60 1564Google Scholar

    [5]

    Shen X K, Sun J, Ling H, Lu Y F 2007 Appl. Phys. Lett. 91 081501.Google Scholar

    [6]

    Popov A M, Colao F, Fantoni R 2009 J. Anal. At. Spectrom. 24 602Google Scholar

    [7]

    戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全 2021 70 205204Google Scholar

    Dai Y J, Li M L, Song C, Gao X, Hao Z Q, Lin J Q 2021 Acta Phys. Sin. 70 205204Google Scholar

    [8]

    Rai V N, Zhang H S, Yueh F Y, Singh J P, Kumar A 2003 Appl. Opt. 42 3662Google Scholar

    [9]

    Liu Y, Baudelet M, Richardson M 2010 J. Anal. At. Spectrom. 25 1316Google Scholar

    [10]

    胡慧琴, 徐雪红, 黄林, 姚明印, 陈添兵, 刘木华, 王彩虹 2016 光谱学与光谱分析 36 1180

    Hu Q H, Xu X H, Huang L, Yao M Y, Chen T B, Liu M H, Wang C H 2016 Spectrosc. Spectral Anal. 36 1180

    [11]

    De Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, Pascale O D 2013 Anal. Chem. 85 10180Google Scholar

    [12]

    Loudyi H, Rifai K, Laville S, Vidal F, Chaker M, Sabsabi M 2009 J. Anal. At. Spectrom. 24 1421Google Scholar

    [13]

    Li C M, Hao Z Q, Zou Z M, Zhou R, Li J M, Guo L B, Li X Y, Lu Y F, Zeng X Y 2016 Opt. Express 24 7850Google Scholar

    [14]

    Aguirre M A, Legnaioli S, Almodóvar F, Hidalgo M, Palleschi V, Canals A 2013 Spectrochim. Acta B 79-80 88

    [15]

    Yang X Y, Hao Z Q, Li C M, Li J M, Yi R X, Shen M, Li K H, Guo L B, Li X Y, Lu Y F, Zeng X Y 2016 Opt. Express 24 13410Google Scholar

    [16]

    Ma S X, Tang Y, Ma Y Y, Chu Y W, Chen F, Hu Z L, Zhu Z H, Guo L B, Zeng X Y, Lu Y F 2019 Opt. Express 27 15091Google Scholar

    [17]

    郑培超, 谭癸宁, 王金梅, 赵怀冬, 刘冉宁 2019 中国激光 46 0711002Google Scholar

    Zheng P C, Tan G N, Wang J M, Zhao H D, Liu R N 2019 Chin. J. Lasers 46 0711002Google Scholar

    [18]

    Bae D, Nam S H, Han S H, Yoo J, Lee Y H 2015 Spectrochim. Acta B 113 70Google Scholar

    [19]

    Matsumoto A, Shimazu Y, Yoshizumi S, Nakano H, Yae S 2020 J. Anal. At. Spectrom. 35 2239Google Scholar

    [20]

    Matsumoto A, Shimazu Y, Nakano H, Murakami K, Yae S 2021 Spectrochim. Acta B 178 106143Google Scholar

    [21]

    陈凭, 王希林, 洪骁, 王晗, 赵晨龙, 贾志东, 邹林, 李彦民, 范建华 2019 光谱学与光谱分析 196 109568

    Chen P, Wang X L, Hong X, Wang H, Zhao C L, J Z D, Zou L, Li Y M, Fan J H 2019 Spectrosc. Spectral Anal. 196 109568

    [22]

    Kaplan D, Aras N, Yalcin S 2024 Microchem. J. 196 109568Google Scholar

    [23]

    Wang Q Y, Liu Y T, Jiang L Y, Chen A M, Han J H, Jin M X 2023 Anal. Chim. Acta 1241 340802Google Scholar

    [24]

    Wang Z H, Li Y F, Chen Y Q, Li R H 2025 Spectrochim. Acta B 226 107139Google Scholar

    [25]

    Bousquet B, Gardette V, Ros V M, Gaudiuso R, Dell’Aglio M, Giacomo A D 2023 Spectrochim. Acta B 204 106686Google Scholar

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法.  , doi: 10.7498/aps.73.20231541
    [2] 董鹏凯, 赵上勇, 郑柯鑫, 王蓟, 高勋, 郝作强, 林景全. 激光诱导击穿光谱技术结合神经网络和支持向量机算法的人参产地快速识别研究.  , doi: 10.7498/aps.70.20201520
    [3] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度.  , doi: 10.7498/aps.70.20210792
    [4] 刘立拓, 王春龙, 余晓娅, 石俊凯, 黎尧, 陈晓梅, 周维虎. 硅片表面纳米颗粒剥离及其成分检测方法研究.  , doi: 10.7498/aps.69.20200517
    [5] 杨雪, 李苏宇, 姜远飞, 陈安民, 金明星. 不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响.  , doi: 10.7498/aps.68.20182198
    [6] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法.  , doi: 10.7498/aps.67.20180374
    [7] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度.  , doi: 10.7498/aps.66.115201
    [8] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量.  , doi: 10.7498/aps.66.095201
    [9] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究.  , doi: 10.7498/aps.64.045202
    [10] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , doi: 10.7498/aps.63.205205
    [11] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素.  , doi: 10.7498/aps.63.145202
    [12] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析.  , doi: 10.7498/aps.63.104213
    [13] 郭连波, 郝荣飞, 郝中骐, 李阔湖, 沈萌, 任昭, 李祥友, 曾晓雁. 激光诱导AlO自由基B2+X2+跃迁光谱研究.  , doi: 10.7498/aps.62.224211
    [14] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究.  , doi: 10.7498/aps.62.215201
    [15] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量.  , doi: 10.7498/aps.62.044211
    [16] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究.  , doi: 10.7498/aps.62.125201
    [17] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究.  , doi: 10.7498/aps.60.045206
    [18] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析.  , doi: 10.7498/aps.59.4571
    [19] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析.  , doi: 10.7498/aps.57.6348
    [20] 苗润才, 潘多海, 陈发堂, 张新惠. 卤族离子对银表面-分子系统中的表面增强Raman光谱信号的影响.  , doi: 10.7498/aps.41.1542
计量
  • 文章访问数:  390
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-07
  • 修回日期:  2025-10-26
  • 上网日期:  2025-11-01

/

返回文章
返回
Baidu
map