搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeSn合金Γ-L谷间载流子输运与辐射复合的竞争机制

黄诗浩 李海林 毛承龙 孙钦钦 黎琼钰 谢灯

引用本文:
Citation:

GeSn合金Γ-L谷间载流子输运与辐射复合的竞争机制

黄诗浩, 李海林, 毛承龙, 孙钦钦, 黎琼钰, 谢灯

Competitive mechanism of Γ-L intervalley carrier transport and direct gap radiative recombination in GeSn alloys

HUANG Shihao, LI Hailin, MAO Chenglong, SUN Qinqin, LI Qiongyu, XIE Deng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • GeSn合金作为一种新型硅基光电材料, 因其带隙可调特性以及兼容硅基CMOS工艺等优点, 在红外光子学领域展现出显著的应用潜力. 尽管GeSn激光器在低温条件下的实验性能已得到初步验证, 但该器件的优化与实际应用仍面临着对材料特性的认识尚不充分等挑战. 本文针对GeSn合金在红外光子学应用中存在的载流子动力学机制不明等问题, 通过建立包含能带参数、非平衡态载流子输运和辐射复合的唯象理论模型, 系统研究了变温条件下热激发和声子辅助过程对GeSn合金直接带自发发射影响的机理. 研究结果表明, GeSn合金ΓCBMLCBM能谷间的载流子转移过程表现出显著的组分依赖性: 对于Sn组分小于10%的低组分GeSn合金, 温度诱导的LCBMΓCBM电子转移占主导, 导致直接带发光效率随着温度的升高而增强; 而在Sn组分在10%—20%的高组分GeSn合金中, ΓCBMLCBM的电子逃逸过程更为显著, 造成直接带发光效率随着温度的升高而降低. 改进型Arrhenius模型分析载流子谷间输运与辐射复合的竞争机制进一步表明, 热激发和声子辅助对ΓCBM能谷电子注入或者逃逸均有促进作用, 是提升或者降低GeSn合金直接带隙辐射复合效率的关键因素. GeSn合金自发发射谱的峰位红移主要源于带隙收缩效应; 同时声子辅助过程会降低载流子能量分布的离散性, 导致直接带发射谱谱线窄化效应明显. 量化研究结果进一步揭示了GeSn合金中载流子的热激发和声子辅助对直接带隙发光影响的机制, 可为其在红外光电器件中的性能调控提供理论参考.
    GeSn alloy, as a novel silicon-based optoelectronic material, exhibits significant application potential in the field of infrared photonics due to its tunable bandgap properties and compatibility with silicon-based CMOS processes. Although the experimental performance of GeSn laser under low-temperature conditions has been preliminarily validated, the optimization and practical application of this device still face challenges such as insufficient understanding of material properties. This work addresses issues such as the unclear carrier dynamics mechanisms in GeSn alloy applications in infrared photonics. A theoretical model integrating band parameters, non-equilibrium carrier transport, and radiative recombination is proposed to systematically investigate the mechanism by which thermal excitation and phonon-assisted processes influence the direct-band spontaneous emission in GeSn alloys under variable temperature conditions. The results indicate that the carrier transfer process between the ΓCBM and LCBM energy bands of GeSn alloy exhibits significant composition dependence: for low-Sn-content GeSn alloy with Sn content below 10%, temperature-induced LCBMΓCBM electron transfer dominates, leading to an increase in direct band emission efficiency with temperature rising, whereas in high-Sn-content GeSn alloys with Sn content between 10% and 20%, the ΓCBMLCBM electron escape process is more pronounced, resulting in a decrease in direct band emission efficiency with the increase of temperature. A modified Arrhenius model of the carrier dynamics competition further indicates that thermal excitation and phonon scattering synergistically regulate electron transfer between ΓCBM and LCBM. The analysis based on the modified Arrhenius model further indicates that both thermal excitation and phonon-assisted processes promote the injection and escape of electrons in the ΓCBM valley, acting as key factors in modulating the radiative recombination efficiency at the direct bandgap of GeSn alloy. The red shift of the peak position in the spontaneous emission spectrum of GeSn alloy is mainly due to the bandgap contraction effect; At the same time, phonon-assisted processes reduce the dispersion of carrier energy distribution, leading to a pronounced narrowing effect in the direct band emission spectrum. The quantitative findings further elucidate the mechanism by which thermal excitation and phonon-assisted processes influence the direct bandgap luminescence of GeSn alloy, providing theoretical guidance for the performance regulation of infrared optoelectronic devices.
  • 图 1  热激发模型下, 注入载流子浓度为1×1018 cm–3时, GeSn合金的直接带隙(ΓCBMΓVBM)变温自发发射光谱 (a) Sn组分为5%; (b) Sn组分为15%

    Fig. 1.  Temperature-dependent spontaneous emission spectra of GeSn alloys under thermal excitation model at an injected carrier concentration of 1×1018 cm–3: (a) Sn content of 5%; (b) Sn content of 15%.

    图 2  GeSn合金直接带隙发光强度随组分与温度变化的三维相图 (a) 低组分(x = 0—10%)热激发模型; (b) 低组分(x = 0—10%)声子辅助模型; (c) 高组分(x = 10%—20%)热激发模型; (d) 高组分(x = 10%—20%)声子辅助模型

    Fig. 2.  Three-dimensional maps of direct bandgap emission intensity of GeSn alloys as a function of Sn content and temperature: (a) Thermal excitation model at low Sn content (x = 0%–10%); (b) phonon-assisted model at low Sn content (x = 0%–10%); (c) thermal excitation model at high Sn content (x = 10%–20%); (d) phonon-assisted model at high Sn content (x = 10%–20%).

    图 3  100 K时不同Sn组分下的声子辅助模型辐射复合示意图 (a) Sn组分为5%; (b) Sn组分为15%

    Fig. 3.  Schematic diagram of phonon-assisted radiative recombination under different Sn compositions at 100 K: (a) 5% Sn composition; (b) 15% Sn composition.

    图 4  利用改进型Arrhenius模型拟合的GeSn合金变温自发发射谱积分强度图 (a) 组分为5%, 热激发模型; (b) 组分为5%, 声子辅助模型; (c) 组分为15%, 热激发模型; (d) 组分为15%, 声子辅助模型

    Fig. 4.  Temperature-dependent integrated spontaneous emission intensity of GeSn alloys fitted with the modified Arrhenius model: (a) 5% Sn, thermal excitation model; (b) 5% Sn, phonon-assisted model; (c) 15% Sn, thermal excitation model; (d) 15% Sn, phonon-assisted model.

    图 5  GeSn 材料在不同Sn含量下, 分别考虑热激发模型与声子辅助模型时提取的热激活能(Ea)随组分变化的趋势对比图

    Fig. 5.  Sn content dependence of extracted thermal activation energy (Ea) in GeSn alloys under thermal excitation and phonon-assisted models.

    图 6  GeSn合金自发发射谱半高宽随温度的变化趋势 (a) 热激发模型; (b) 声子辅助模型

    Fig. 6.  Temperature dependence of the full width at half maximum (FWHM) of spontaneous emission spectra of GeSn alloys: (a) Thermal excitation model; (b) phonon-assisted model.

    图 7  GeSn合金自发发射谱峰位随温度的变化趋势 (a) 热激发模型; (b) 声子辅助模型

    Fig. 7.  Variation of emission peak energy with temperature for GeSn alloys under (a) thermal excitation and (b) phonon-assisted models.

    Baidu
  • [1]

    Chang G E, Yu S Q, Liu J, Cheng H H, Soref R A, Sun G 2022 IEEE J. Sel. Topics Quantum Electron. 28 3800611

    [2]

    Giunto A, Morral A F I 2024 Appl. Phys. Rev. 11 41333Google Scholar

    [3]

    An S, Park H, Kim M 2023 J. Mater. Chem. C 11 2430Google Scholar

    [4]

    Miao Y H, Wang G L, Kong Z Z, Xu B Q, Zhao X W, Luo X, Lin H X, Dong Y, Lu B, Dong L P, Zhou J R, Liu J B, Radamson H H 2021 Nanomaterials 11 2556Google Scholar

    [5]

    Reboud V, Gassenq A, Pauc N, Aubin J, Milord L, Thai Q M, Bertrand M, Guilloy K, Rouchon D, Rothman J, Zabel T, Armand P F, Sigg H, Chelnokov A, Hartmann J M, Calvo V 2017 Appl. Phys. Lett. 111 92101Google Scholar

    [6]

    Ghosh S, Bansal R, Sun G, Soref R A, Cheng H H, Chang G E 2022 Sensors 22 3978Google Scholar

    [7]

    Huang Y P, Wu B R, Ghosh S, Jheng Y T, Ho Y L, Wu Y J, Wisessint A, Kim M, Chang G E 2024 Opt. Express 32 39560Google Scholar

    [8]

    Qian L, Fan W J, Tan C S, Zhang D H 2017 Opt. Mater. Express 7 800Google Scholar

    [9]

    Liu J F 2014 Photonics 1 162Google Scholar

    [10]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911Google Scholar

    [11]

    Du W, Ghetmiri S A, Conley B R, Mosleh A, Nazzal A, Soref R A, Sun G, Tolle J, Margetis J, Naseem H A, Yu S Q 2014 Appl. Phys. Lett. 105 51104Google Scholar

    [12]

    Huang S H, Zheng Q Q, Xie W M, Lin J Y, Huang W, Li C, Qi D F 2018 J. Phys. : Condens. Matter. 30 465701Google Scholar

    [13]

    Ryu M Y, Harris T R, Yeo Y K, Beeler R T, Kouvetakis J 2013 Appl. Phys. Lett. 102 171908Google Scholar

    [14]

    Julsgaard B, Von D, Tidemand L P, Pedersen C, Ikonic Z, Buca D 2020 Photonics Res. 8 788Google Scholar

    [15]

    Menéndez J, Poweleit C D, Tilton S E 2020 Phys. Rev. B 101 195204Google Scholar

    [16]

    Wu S S, Huang S H, Qian J H, Huang W, Lin G Y, Cheng S Y, Li C 2025 J. Phys. D: Appl. Phys. 58 135308Google Scholar

    [17]

    Viña L, Logothetidis S, Cardona M 1984 Phys. Rev. B 30 1979Google Scholar

    [18]

    Bertrand M, Thai Q, Chrétien J, Pauc N, Aubin J, Milord L, Gassenq A, Hartmann J, Chelnokov A, Calvo V, Reboud V 2019 Annal. Phys. 531 1800396Google Scholar

    [19]

    Hong H Y, Zhang L, Qian K, An Y Y, Li C, Li J, Chen S Y, Huang W, Wang J Y, Zhang S H 2021 Opt. Express 29 441Google Scholar

    [20]

    黄诗浩, 李佳鹏, 李海林, 卢旭星, 孙钦钦, 谢灯 2025 74 36101Google Scholar

    Huang S H, Li J P, Li H L, Lu X X, Sun Q Q, Xie D 2025 Acta Phys. Sin. 74 36101Google Scholar

    [21]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 36202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 61 36202]Google Scholar

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 36202 (in Chinese)Google Scholar

    [22]

    Chuang S L 2009 Physics of Photonic Devices 2nd ed (Hoboken, N. J: John Wiley & Sons) p347

    [23]

    Wirths S, Geiger R, Von Den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [24]

    Ghosh S, Sun G, Yu S Q, Chang G E 2025 IEEE J. Select. Topics Quantum Electron. 31 1

    [25]

    Huang B J, Chang C Y, Hsieh Y D, Soref R A, Sun G, Cheng H H, Chang G E 2019 ACS Photonics 6 1931Google Scholar

    [26]

    Huang Q X, Liu X Q, Zheng J, Yang Y Z, Zhang D D, Pang Y Q, Cui J L, Liu Z, Zuo Y H, Cheng B W 2023 J. Lumin. 255 119623Google Scholar

    [27]

    Fang Y T, Wang L, Sun Q L, Lu T P, Deng Z, Ma Z G, Jiang Y, Jia H Q, Wang W X, Zhou J M, Chen H 2015 Sci. Rep. 5 12718Google Scholar

  • [1] 郑子超, 李志康, 桑丽霞. 等离激元金属-半导体复合电极的界面声子热输运特性.  , doi: 10.7498/aps.74.20250683
    [2] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性.  , doi: 10.7498/aps.73.20240323
    [3] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , doi: 10.7498/aps.65.086301
    [4] 成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林. 高压下'-Fe4N晶态合金的声子稳定性与磁性.  , doi: 10.7498/aps.64.156301
    [5] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究.  , doi: 10.7498/aps.62.026101
    [6] 张郑兵, 马小柏, 金钻明, 马国宏, 杨金波. Fe/Si薄膜中相干声学声子的光激发研究.  , doi: 10.7498/aps.61.097401
    [7] 王亚珍, 黄平, 龚中良. 热激发效应对界面摩擦的影响.  , doi: 10.7498/aps.61.063203
    [8] 苏少坚, 成步文, 薛春来, 张东亮, 张广泽, 王启明. GeSn合金的晶格常数对Vegard定律的偏离.  , doi: 10.7498/aps.61.176104
    [9] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导.  , doi: 10.7498/aps.60.036806
    [10] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导.  , doi: 10.7498/aps.60.126802
    [11] 金蔚, 惠宁菊, 屈世显. 螺旋纳米带中的声子输运.  , doi: 10.7498/aps.60.016301
    [12] 章 黎, 祖小涛. 热辅助磁盘探针存储的研究.  , doi: 10.7498/aps.55.4271
    [13] 成泰民, 鲜于泽, 冮铁臣. 光频支声子对二维Heisenberg铁磁系统磁激发的影响.  , doi: 10.7498/aps.55.2941
    [14] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , doi: 10.7498/aps.55.1769
    [15] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性.  , doi: 10.7498/aps.54.4511
    [16] 吕少哲, 陈宝玖, 黄世华, 王笑军, 陆丽珠, 严懋勋. SrAl12O19∶Pr3+中的热激发.  , doi: 10.7498/aps.52.1009
    [17] 鲜于泽, 卢志超, 李际周, 叶春堂, 李竹起, 康健, 沈保根. 铁基非晶态因瓦合金的声子谱研究.  , doi: 10.7498/aps.43.99
    [18] 余超凡, 陈斌, 何国柱. 巡游电子系统中电子-声子相互作用对磁性激发的影响.  , doi: 10.7498/aps.43.839
    [19] 堪季强;龙期威;汪克林. 小空位团浅能级对正电子的声子激发比捕获率.  , doi: 10.7498/aps.38.1360
    [20] 阎守胜, 高利明, 万君佐, 彭正伟, 应志强. FeMnAl合金低温声子热导率的反常行为.  , doi: 10.7498/aps.34.809
计量
  • 文章访问数:  361
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-06
  • 修回日期:  2025-09-11
  • 上网日期:  2025-11-18

/

返回文章
返回
Baidu
map