搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可变比冲磁等离子体发动机电离与离子加热过程数值模拟

杨振宇 张元哲 范威 杨广杰 韩先伟 谭畅

引用本文:
Citation:

可变比冲磁等离子体发动机电离与离子加热过程数值模拟

杨振宇, 张元哲, 范威, 杨广杰, 韩先伟, 谭畅

Numerical investigation on discharge and ion heating processes of variable specific impulse magnetoplasma rocket engine

YANG Zhenyu, ZHANG Yuanzhe, FAN Wei, YANG Guangjie, HAN Xianwei, TAN Chang
cstr: 32037.14.aps.74.20251170
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 可变比冲磁等离子体发动机具有大推力、高比冲、长寿命、可变比冲、和高效率等技术优势, 是未来深空探测、载人航天所必需的先进动力装置. 可变比冲磁等离子体发动机内螺旋波等离子体源与离子回旋共振单元相互串联, 探究发动机内电离过程对离子加热过程的影响规律对发动机性能测试与优化具有重要意义. 本文建立了串联螺旋波等离子体源与离子回旋共振单元的多组分流体模型, 并在不同螺旋波等离子体源输入电流与气压条件下进行了数值模拟, 探究了螺旋波等离子体源工作状态对离子回旋共振单元离子能量密度的影响规律. 研究结果表明: 螺旋波等离子体源放电模式随输入电流与背景气压增大逐渐转变, 计算区域内等离子体密度与离子回旋共振单元内的离子能量密度出现跳变现象; 在本文模型及输入条件下, 螺旋波等离子体源中的工质电离过程与离子回旋共振单元的离子加热过程是解耦的, 螺旋波等离子体源的工作模式并不影响单个离子通过离子回旋共振单元所获得的能量增益, 发动机进而可以实现多模态工作.
    With the technological advantages of high thrust, high specific impulse, long life, variable specific impulse, and high efficiency, the variable specific impulse magnetoplasma rocket engine has become the essential advanced propulsion system for the deep space exploration and manned space flight in the future. In the variable specific impulse magnetoplasma rocket engine, the ion cyclotron resonance heating stage is linked with the helicon plasma source. The operation status of the helicon plasma source has a direct influence on the ion heating process in the ion cyclotron resonance heating stage. It is of great significance for the testing and the optimization of the engine performance to reveal the influence of the ionization process on the ion heating process. In this paper, a multi-fluid model in which the ion cyclotron resonance heating stage is linked with the helicon plasma source is developed. The numerical simulations with different input currents of helicon plasma source and different pressures are performed to analyze the effect of the operation status in the helicon plasma source on the ion energy density in the ion cyclotron resonance heating stage. The results show that the discharge mode of the helicon plasma source gradually changes with the increase of the input current and that the plasma density jump appears while the ion temperature remains basically unchanged. With the plasma density jump and nearly identical ion temperature the ion energy density jump also appears in the simulation domain. Similar to the results of the simulation under different input currents of the helicon plasma source, the plasma density and the ion energy density also jump when the pressure increases. However, the ion temperature decreases due to the discrepancy between the input frequency and the resonance frequency. With the numerical model and the input conditions of this study, the ionization process in the helicon plasma source is decoupled with the ion heating process in the ion cyclotron resonance heating stage. The energy gain of a single ion in the ion cyclotron resonance heating stage does not change with the operation status of the helicon plasma source, thereby accounting for the ability of the engine to work in multi mode.
      通信作者: 谭畅, casc_tan@163.com
      Corresponding author: TAN Chang, casc_tan@163.com
    [1]

    于达仁, 乔磊, 蒋文嘉 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [2]

    Chang F R, Squire J P, Carter M D 2018 American Institute of Aeronautics and Astronautics Propulsion and Energy Forum Cincinnati, USA, July 9−11, 2018 pp4416−4423

    [3]

    Chang F R, Giambusso M, Corrigan A M H, Dean L O, Warrayat M F 2022 37th International Electric Propulsion Conference Cambridge, USA, June 19−23, 2022 pp1−10

    [4]

    于达仁, 汤尧, 刘辉 2023 力学学报 55 2857

    Yu D R, Tang Y, Liu H 2023 Chin. J. Theor. Appl. Mech. 55 2857

    [5]

    杨雄, 程谋森, 王墨戈, 李小康 2017 66 025201Google Scholar

    Yang X, Cheng M S, Wang M G, Li X K 2017 Acta Phys. Sin. 66 025201Google Scholar

    [6]

    Chen F F 2003 Phys. Plasmas 10 2586Google Scholar

    [7]

    Wu M Y, Xiao C J, Wang X 2022 Plasma Sci. Technol. 5 24

    [8]

    Chang L, Caneses J F, Thakur S C 2022 Front. Phys. 10 1009563Google Scholar

    [9]

    Rapp J, Owen L W, Canik J 2019 Phys. Plasmas 26 042513Google Scholar

    [10]

    杨雄, 李小康, 郭大伟, 程谋森, 张帆, 车碧轩, 雷清雲 2024 航空学报 45 028761

    Yang X, Li X K, Guo D W, Cheng M S, Zhang F, Che B X, Lei Q Y 2024 Acta Aeronauti. Astronaut. Sin. 45 028761

    [11]

    Breizman B N, Ilin A V 2001 Phys. Plasmas 8 907Google Scholar

    [12]

    Ilin A V, Chang F R, Squire J P 2005 43rd AlAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 10−13, 2005 pp949−960

    [13]

    Zhang Y J 2022 Nucl. Mater. Energy 33 101280Google Scholar

    [14]

    Ilin A V, Chang F R 2004 Comput. Phys. Commun. 164 251Google Scholar

    [15]

    Wu M Y, Xiao C J, Wang X G, Tan C, Xu T C, He R C, Yuan R X, Xu A D 2022 Phys. Plasmas 29 023508Google Scholar

    [16]

    Sun C J, Zhang Y J, Sang C F 2025 Nucl. Fusion 65 056007Google Scholar

    [17]

    Peter L G, Robert J H 1994 J. Vac. Sci. Technol. 12 461Google Scholar

    [18]

    Yang Z Y, Fan W , Wei J G 2022 Plasma Sci. Technol. 24 074006

    [19]

    Zhen F H, Chen Z Z, Zhang J Z 2000 IEEE Trans. Microwave Theory Tech. 48 1550Google Scholar

    [20]

    Boris J P, Landsberg A M, Oran E S, Gardner J H 1993 LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations

    [21]

    Yang Z Y, Fan W, Han X W 2023 Front. Phys. 11 1182960Google Scholar

    [22]

    杨振宇, 范威, 鲁海峰, 张元哲, 韩先伟 2023 推进技术 44 2208001

    Yang Z Y, Fan W, Lu H F, Zhang Y Z, Han X W 2023 Journal of Propulsion Technology 44 2208001

    [23]

    Chen F F 2007 Plasma Sources Sci. Technol. 16 593Google Scholar

    [24]

    Thakur S C 2015 IEEE Trans. Plasma Sci. 43 2754Google Scholar

    [25]

    Kim S H 2008 Plasma Phys. Control. Fusion 50 035007Google Scholar

  • 图 1  VASIMR示意图

    Fig. 1.  Schematic of VASIMR.

    图 2  不同电子温度的反应系数 (a) 电离; (b) 激发

    Fig. 2.  Reaction rates with different electron temperature: (a) Ionization; (b) excitation.

    图 3  几何模型

    Fig. 3.  Geometric model.

    图 4  轴线上的磁场位形

    Fig. 4.  The profile of background magnetic field along axis.

    图 5  不同HPS天线输入电流计算过程中的等离子体参数 (a) 电子密度; (b) 电子温度; (c) 离子温度

    Fig. 5.  The plasma parameters during the simulation with different HPS antenna input current: (a) Electron density; (b) electron temperature; (c) ion temperature.

    图 6  不同HPS输入电流的离子能量密度分布 (a) 60 A; (b) 100 A

    Fig. 6.  The ion energy density distribution with different input current of HPS: (a) 60 A; (b) 100 A.

    图 7  不同HPS输入电流离子能量密度的一维分布 (a) 对称轴; (b) z = 0.5 m

    Fig. 7.  The 1D distribution of ion energy density with different input current of HPS: (a) Symmetric axis; (b) z = 0.5 m.

    图 8  不同气压计算过程中的电子参数 (a) 电子密度; (b) 电子温度; (c) 离子温度

    Fig. 8.  The plasma parameters during simulation with different pressure: (a) Electron density; (b) electron temperature; (c) ion temperature.

    图 9  离子温度分布 (a) 0.34 Pa; (b) 0.42 Pa; (c) 0.59 Pa; (d) 0.84 Pa

    Fig. 9.  Ion temperature distribution: (a) 0.34 Pa; (b) 0.42 Pa; (c) 0.59 Pa; (d) 0.84 Pa.

    图 10  不同背景气压参数niTi的一维分布 (a) 对称轴; (b) z = 0.5 m.

    Fig. 10.  The 1 D distribution of niTi with different background pressure: (a) Symmetric axis; (b) z = 0.5 m.

    表 1  模型的几何参数

    Table 1.  Geometric parameters of the model.

    参数参数
    rstart/m0rc1/m0.07
    rend/m0.1zc2/m0.35
    zstart/m0rc2/m0.07
    zend/m0.51Δr/m0.005
    rp/m0.06Δz/m0.01
    zc1/m0.15Δt/(10–12 s)2
    下载: 导出CSV
    Baidu
  • [1]

    于达仁, 乔磊, 蒋文嘉 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [2]

    Chang F R, Squire J P, Carter M D 2018 American Institute of Aeronautics and Astronautics Propulsion and Energy Forum Cincinnati, USA, July 9−11, 2018 pp4416−4423

    [3]

    Chang F R, Giambusso M, Corrigan A M H, Dean L O, Warrayat M F 2022 37th International Electric Propulsion Conference Cambridge, USA, June 19−23, 2022 pp1−10

    [4]

    于达仁, 汤尧, 刘辉 2023 力学学报 55 2857

    Yu D R, Tang Y, Liu H 2023 Chin. J. Theor. Appl. Mech. 55 2857

    [5]

    杨雄, 程谋森, 王墨戈, 李小康 2017 66 025201Google Scholar

    Yang X, Cheng M S, Wang M G, Li X K 2017 Acta Phys. Sin. 66 025201Google Scholar

    [6]

    Chen F F 2003 Phys. Plasmas 10 2586Google Scholar

    [7]

    Wu M Y, Xiao C J, Wang X 2022 Plasma Sci. Technol. 5 24

    [8]

    Chang L, Caneses J F, Thakur S C 2022 Front. Phys. 10 1009563Google Scholar

    [9]

    Rapp J, Owen L W, Canik J 2019 Phys. Plasmas 26 042513Google Scholar

    [10]

    杨雄, 李小康, 郭大伟, 程谋森, 张帆, 车碧轩, 雷清雲 2024 航空学报 45 028761

    Yang X, Li X K, Guo D W, Cheng M S, Zhang F, Che B X, Lei Q Y 2024 Acta Aeronauti. Astronaut. Sin. 45 028761

    [11]

    Breizman B N, Ilin A V 2001 Phys. Plasmas 8 907Google Scholar

    [12]

    Ilin A V, Chang F R, Squire J P 2005 43rd AlAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 10−13, 2005 pp949−960

    [13]

    Zhang Y J 2022 Nucl. Mater. Energy 33 101280Google Scholar

    [14]

    Ilin A V, Chang F R 2004 Comput. Phys. Commun. 164 251Google Scholar

    [15]

    Wu M Y, Xiao C J, Wang X G, Tan C, Xu T C, He R C, Yuan R X, Xu A D 2022 Phys. Plasmas 29 023508Google Scholar

    [16]

    Sun C J, Zhang Y J, Sang C F 2025 Nucl. Fusion 65 056007Google Scholar

    [17]

    Peter L G, Robert J H 1994 J. Vac. Sci. Technol. 12 461Google Scholar

    [18]

    Yang Z Y, Fan W , Wei J G 2022 Plasma Sci. Technol. 24 074006

    [19]

    Zhen F H, Chen Z Z, Zhang J Z 2000 IEEE Trans. Microwave Theory Tech. 48 1550Google Scholar

    [20]

    Boris J P, Landsberg A M, Oran E S, Gardner J H 1993 LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations

    [21]

    Yang Z Y, Fan W, Han X W 2023 Front. Phys. 11 1182960Google Scholar

    [22]

    杨振宇, 范威, 鲁海峰, 张元哲, 韩先伟 2023 推进技术 44 2208001

    Yang Z Y, Fan W, Lu H F, Zhang Y Z, Han X W 2023 Journal of Propulsion Technology 44 2208001

    [23]

    Chen F F 2007 Plasma Sources Sci. Technol. 16 593Google Scholar

    [24]

    Thakur S C 2015 IEEE Trans. Plasma Sci. 43 2754Google Scholar

    [25]

    Kim S H 2008 Plasma Phys. Control. Fusion 50 035007Google Scholar

  • [1] 张宇, 罗倩, 黄高煌, 高飞, 王友年. 射频感应耦合远端氢等离子体源的二维流体模拟.  , 2026, 75(2): . doi: 10.7498/aps.75.20251202
    [2] 李靖宇, 蒋星照, 何倩, 张逸凡, 吴桐, 姜森钟, 宋远红, 贾文柱. 深度学习代理模型的容性耦合氩等离子体流体模拟: 非对称推理与定量可信边界.  , 2025, 74(23): 235205. doi: 10.7498/aps.74.20251290
    [3] 赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究.  , 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [4] 罗凌峰, 杨涓, 耿海, 吴先明, 牟浩. 磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟.  , 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [5] 杨振宇, 张元哲, 范威, 杨广杰, 韩先伟. 磁等离子体发动机中磁喷管分离过程的流体模拟.  , 2024, 73(10): 105201. doi: 10.7498/aps.73.20231862
    [6] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源.  , 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [7] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究.  , 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [8] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法.  , 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [9] 黄华, 李江涛, 王倩男, 孟令彪, 齐伟, 洪伟, 张智猛, 张博, 贺书凯, 崔波, 伍艺通, 张航, 吉亮亮, 周维民, 胡建波. 星光III装置上材料动态压缩过程的激光质子照相实验研究.  , 2022, 71(19): 195202. doi: 10.7498/aps.71.20220919
    [10] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟.  , 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [11] 高书涵, 王绪成, 张远涛. 脉冲调制条件下介质阻挡特高频放电特性的数值模拟.  , 2020, 69(11): 115204. doi: 10.7498/aps.69.20191853
    [12] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性.  , 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [13] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响.  , 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [14] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟.  , 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [15] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟.  , 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [16] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟.  , 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [17] 蓝朝晖, 胡希伟, 刘明海. 大面积表面波等离子体源微波功率吸收的数值模拟研究.  , 2011, 60(2): 025205. doi: 10.7498/aps.60.025205
    [18] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟.  , 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [19] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟.  , 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟.  , 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
计量
  • 文章访问数:  567
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-10-20
  • 上网日期:  2025-10-29
  • 刊出日期:  2025-12-05

/

返回文章
返回
Baidu
map