-
理解原子尺度下氦浓度对低活化钢缺陷演化和力学性能的内在关联是设计兼具优异抗肿胀和抗脆化性能聚变材料的关键. 本文通过分子动力学模拟研究氦浓度对单晶铁的影响. 结果表明NHe < 3.0%时, 弗仑克尔缺陷对(Frenkel pairs, FPs)数量都表现为线性增长至峰值后稳定; 而当NHe ≥ 3.0%时, 间隙大团簇的形成会吸收间隙原子长大并降低湮灭速率, 导致FPs数量二次增长, 被空位环绕后, 不再阻碍复位, 数量二次稳定. 当NHe增至3.0%时, 单晶铁的弹性模量, 屈服强度和韧性分别下降了21%, 88%和57%, 此后氦浓度增大, 力学性能不再降低. 这是由于NHe < 3.0%时, 随着氦浓度上升, 氦致缺陷增多, 导致韧性降低, 促进位错形核, 使弹性模量和屈服强度下降; 而当NHe ≥ 3.0%时, 初始缺陷存在位错, 且团簇数量变化甚微, 韧性不再降低, 不影响位错形核, 弹性模量和屈服强度随之稳定. NHe = 3.0%时出现的大团簇阻碍滑移系滑移, 改变滑移平面方向, 削弱主滑移系作用, 导致小滑移带增多, 塑性变形机制由交滑移转变为滑移带相遇后分解为离散位错和点缺陷. 研究揭示了氦浓度对单晶铁缺陷演化及力学性能的影响规律和关键机制, 为聚变铁基材料设计提供理论依据.Understanding the intrinsic correlation between helium concentration and the evolution of defects as well as mechanical properties in low-activation steel on an atomic scale is crucial for designing fusion materials with excellent resistance to swelling and embrittlement. This study investigates the effect of helium concentration on single-crystal iron through molecular dynamics simulations, thereby clarifying the mechanisms by which helium concentration affects helium defect evolution, mechanical properties, and plastic deformation behavior of low-activation steel on an atomic scale. Models of body-centered cubic (BCC) iron with different helium concentrations (0.5%—4.5%) are established. Wigner-Seitz cell analysis and cluster clustering methods are employed to track the evolution of Frenkel Pairs (FPs) and cluster defects, revealing the mechanism of helium concentration-induced FPs and cluster formation at 500 ℃. Furthermore, combined with tensile mechanical simulations, the effects of helium behavior on the mechanical properties of single-crystal iron, such as elastic modulus, yield strength, and toughness, are analyzed, and the correlation mechanisms between helium concentration-induced defect evolution, mechanical properties, and plastic deformation behavior are revealed. The results show that when NHe < 3.0%, the number of FPs linearly reaches to a peak and then stabilizes. This is because helium behavior causes a rapid increase in the number of FPs and a large number of interstitial atoms are generated, some of which recombine. The annihilation rate of FPs increases with their number increasing and eventually equals the generation rate, resulting in a stable number of FPs. When NHe ≥ 3.0%, the initial increase and stabilization are the same as those for NHe < 3.0%. However, after the formation of large interstitial clusters, they absorb interstitial atoms and grow, hindering recombination and reducing the annihilation rate of FPs, thus leading to a secondary increase. The large clusters are surrounded by vacancies and no longer hinder FP recombination, and a new balance is achieved, resulting in a secondary stabilization of the FP number. When NHe increases to 3.0%, the elastic modulus, yield strength, and toughness of single-crystal iron decrease by 21%, 88%, and 57%, respectively; beyond this concentration, the mechanical properties no longer decrease. This is because when NHe < 3.0%, as helium concentration increases, helium-induced defects increase, leading to a decrease in toughness and promoting dislocation nucleation, thus reducing the elastic modulus and yield strength. When NHe ≥ 3.0%, dislocations exist in the initial defects, and the number of clusters changes slightly; toughness no longer decreases, and dislocation nucleation is not affected, leading to the stabilization of elastic modulus and yield strength. At NHe = 3.0%, the formation of large clusters hinders the movement of slip systems, changes the orientation of slip planes, weakens the effectiveness of the main slip system, which leads to an increase in small slip bands and causes the plastic deformation mechanism to transform from cross-slip to decomposition into discrete dislocations and point defects once the slip bands intersect with each other. This study reveals the influence patterns and key mechanisms of helium concentration on defect evolution and mechanical properties of single-crystal iron, providing a theoretical basis for designing fusion iron-based materials.
-
Keywords:
- single-crystal iron /
- helium concentration /
- defect evolution /
- mechanical properties
-
图 1 含有不同氦浓度的单晶铁拉伸的分子动力学模型示意图及对应氦浓度模型 (a) 模型示意图; (b) NHe = 0.5%; (c) NHe = 1.5%; (d) NHe = 3.0%; (e) NHe = 4.5%. Fe原子被隐藏以更好地观察氦原子分布和形貌
Fig. 1. Schematic of molecular dynamics models for tensile deformation of single-crystal iron with different helium concentrations and corresponding models (a) Schematic of the model; (b) NHe = 0.5%; (c) NHe = 1.5%; (d) NHe = 3.0%; (e) NHe = 4.5%. Fe atoms are hidden to better observe the distribution and morphology of helium atoms.
图 2 不同氦浓度单晶铁中缺陷演化过程 (a) NHe = 0.5%; (b) NHe = 1.5%; (c) NHe = 3.0%; (d) NHe = 4.5%. 红色小球代表空位, 蓝色小球代表间隙原子
Fig. 2. Defect evolution processes in single-crystal iron with different helium concentrations: (a) NHe = 0.5%; (b) NHe = 1.5%; (c) NHe = 3.0%; (d) NHe = 4.5%. Red spheres represent vacancies, and blue spheres represent interstitial atoms.
图 9 无氦的单晶铁在拉伸过程中的原子构型演化 (a) ε = 0.003; (b) ε = 0.054; (c) ε = 0.108; (d) ε = 0.12; (e) ε = 0.135; (f) ε = 0.165; (g) ε = 0.189; (h) ε = 0.21; 灰白色原子表示“other”, 绿色表示“fcc”; 线条为位错线, 黑色表示“1/2$ \left\langle {111} \right\rangle $”, 蓝色表示“$ \left\langle {100} \right\rangle $”, 黄色表示“$ \left\langle {110} \right\rangle $”
Fig. 9. Atomic configuration evolution of single-crystal iron without helium concentration effect during tensile deformation: (a) ε = 0.003; (b) ε = 0.054; (c) ε = 0.108; (d) ε = 0.12; (e) ε = 0.135; (f) ε = 0.165; (g) ε = 0.189; (h) ε = 0.21; gray-white atoms denote “other”, green denotes “fcc”; lines are dislocation lines, black denotes “1/2$ \left\langle {111} \right\rangle $”, blue denotes “$ \left\langle {100} \right\rangle $”, and yellow denotes “$ \left\langle {110} \right\rangle $”.
图 10 NHe = 0.5%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.048; (c) ε = 0.075; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.162; (g) ε = 0.186; (h) ε = 0.21
Fig. 10. Atomic configuration evolution of single-crystal iron with 0.5% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.048; (c) ε = 0.075; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.162; (g) ε = 0.186; (h) ε = 0.21.
图 11 NHe = 1.5%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.024; (c) ε = 0.06; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.15; (g) ε = 0.174; (h) ε = 0.21
Fig. 11. Atomic configuration evolution of single-crystal iron with 1.5% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.024; (c) ε = 0.06; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.15; (g) ε = 0.174; (h) ε = 0.21.
图 12 NHe = 3.0%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.072; (e) ε = 0.12; (f) ε = 0.135; (g) ε = 0.18; (h) ε = 0.21
Fig. 12. Atomic configuration evolution of single-crystal iron with 3.0% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.072; (e) ε = 0.12; (f) ε = 0.135; (g) ε = 0.18; (h) ε = 0.21.
图 13 NHe = 4.5%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.075; (e) ε = 0.126; (f) ε = 0.144; (g) ε = 0.189; (h) ε = 0.210
Fig. 13. Atomic configuration evolution of single-crystal iron with 4.5% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.075; (e) ε = 0.126; (f) ε = 0.144; (g) ε = 0.189; (h) ε = 0.210.
-
[1] Xie X Y, Mao C L, Liu C X, Luo J T, Liu Y C 2025 Int. J. Plast. 188 104313
Google Scholar
[2] Yu M, Liu X K, Liu H Z, Jin S X, Xiong Y, Guo L P, Zhang W P 2025 Radiat. Phys. Chem. 237 113035
Google Scholar
[3] Zhou H B, Wang J L, Jiang W, Lu G H, Aguiar J A, Liu F 2016 Acta Mater. 119 1
Google Scholar
[4] Yamamoto T, Odette G R, Miao P, Edwards D J, Kurtz R J 2009 J. Nucl. Mater. 386-388 338
[5] Wang Y X, Xu Q, Yoshiie T, Pan Z Y 2008 J. Nucl. Mater. 376 133
Google Scholar
[6] Hetherly J, Martinez E, Di Z F, Nastasi M, Caro A 2012 Scr. Mater. 66 17
Google Scholar
[7] Han W Z, Demkowicz M J, Fu E G, Wang Y Q 2012 Misra A Acta Mater. 60 6341
Google Scholar
[8] Ullmaier H 1984 Nucl. Fusion 24 1039
Google Scholar
[9] Xia L D, Liu W B, Liu H P, Zhang J H, Chen H, Yang Z G, Zhang C 2018 Nucl. Eng. Technol. 50 132
Google Scholar
[10] Wei Y P, Liu P P, Zhu Y M, Wang Z Q, Wan F R, Zhan Q 2016 J. Alloys Compd. 676 481
Google Scholar
[11] Yang Z, Yang J Y, Liao Q, Xu S, Li B S 2021 Chin. Phys. B 30 056517
[12] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 65 077803
Google Scholar
Guo H Y, Xia M, Yan Q Z, Guo L P, Chen J H, Ge C C 2016 Acta Phys. Sin. 65 077803
Google Scholar
[13] Agarwal S, Bhattacharya A, Trocellier P, Zinkle S J 2019 Acta Mater. 163 14
Google Scholar
[14] Harrison R W, Greaves G, Hinks J A, Donnelly S E 2017 J. Nucl. Mater. 495 492
Google Scholar
[15] Morishita K, Sugano R, Wirth B D 2003 J. Nucl. Mater. 323 243
Google Scholar
[16] Tschopp M, Gao F, Solanki K 2016 Acta Mater. 124 544
[17] Zhou Y L, Wang J, Hou Q, Deng A H 2014 J. Nucl. Mater. 446 49
Google Scholar
[18] 陈敏, 汪俊, 侯氢 2009 58 1149
Google Scholar
Chen M, Wang J, Hou Q 2009 Acta Phys. Sin. 58 1149
Google Scholar
[19] Kobayashi R, Hattori T, Tamura T, Ogata S 2015 J. Nucl. Mater. 463 1071
Google Scholar
[20] Galloway G J, Ackland G J 2013 Phys. Rev. B 87 104106
Google Scholar
[21] Yu J N, Yu G, Yao Z W, Schäublin R 2007 J. Nucl. Mater. 367–370 462
[22] Lucas G, Schäublin R 2008 J. Phys. Condens. Matter 20 415206
Google Scholar
[23] Hu N W, Deng H Q, Xiao S F, Hu W Y 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 303 72
Google Scholar
[24] Hu N W, Deng H Q, Wang C L, Hu W Y 2016 RSC Adv. 6 27113
Google Scholar
[25] Yang L, Deng H Q, Gao F, Heinisch H L, Kurtz R J, Hu S Y, Li Y L, Zu X T 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 303 68
Google Scholar
[26] Gao C, Tian D F, Li M S, Qian D Z 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 418 46
Google Scholar
[27] Chen Y T, Morishita K 2022 Nucl. Mater. Energy 30 101150
Google Scholar
[28] Yang Y S, Wang L S 2022 Int. J. Hydrogen Energy 47 24398
Google Scholar
[29] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[30] Martínez E, Schwen D, Caro A 2015 Acta Mater. 84 208
Google Scholar
[31] Caro A, Hetherly J, Stukowski A, Caro M, Martínez E, Srivilliputhur S, Zepeda-Ruiz L, Nastasi M 2011 J. Nucl. Mater. 418 261
Google Scholar
[32] Wang L S, Yan S L, Meng M, Xue K M, Li P 2022 J. Nucl. Mater. 567 153818
Google Scholar
[33] Anento N, Serra A 2020 Comput. Mater. Sci. 179 109679
Google Scholar
[34] Li P, Wang L S, Yan S L, Meng M, Zhou Y F, Xue K M 2021 Int. J. Refract. Met. Hard Mater. 94 105376
Google Scholar
[35] Hoover W G 1985 Phys. Rev. A 31 1695
Google Scholar
[36] Hoover W G 1986 Phys. Rev. A 34 2499
Google Scholar
[37] Gibson J B, Goland A N, Milgram M, Vineyard G H 1960 Phys. Rev. 120 1229
Google Scholar
[38] Nordlund K, Ghaly M, Averback R S, Caturla M, Diaz de la Rubia T, Tarus J 1998 Phys. Rev. B 57 7556
Google Scholar
[39] Barrett C D, Tschopp M A, El Kadiri H 2012 Scr. Mater. 66 666
Google Scholar
[40] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
Google Scholar
[41] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
Google Scholar
[42] Stukowski A 2012 Modelling Simul. Mater. Sci. Eng. 20 045021
Google Scholar
[43] Stukowski A, Albe K 2010 Modelling Simul. Mater. Sci. Eng. 18 085001
Google Scholar
[44] Stukowski A, Bulatov V V, Arsenlis A 2012 Modelling Simul. Mater. Sci. Eng. 20 085007
Google Scholar
计量
- 文章访问数: 35
- PDF下载量: 0
- 被引次数: 0








下载: