搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦浓度对单晶铁缺陷演化及力学性能的影响规律与微观关联机制

王路生 沈量 罗龙 彭彦鸿 杨国平 赵晗 丁军

引用本文:
Citation:

氦浓度对单晶铁缺陷演化及力学性能的影响规律与微观关联机制

王路生, 沈量, 罗龙, 彭彦鸿, 杨国平, 赵晗, 丁军

Effects of helium concentration on defect evolution and mechanical properties in single-crystal iron: Laws and microscopic correlation mechanisms

WANG Lusheng, SHEN Liang, LUO Long, PENG Yanhong, YANG Guoping, ZHAO Han, DING Jun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 理解原子尺度下氦浓度对低活化钢缺陷演化和力学性能的内在关联是设计兼具优异抗肿胀和抗脆化性能聚变材料的关键. 本文通过分子动力学模拟研究氦浓度对单晶铁的影响. 结果表明NHe < 3.0%时, 弗仑克尔缺陷对(Frenkel pairs, FPs)数量都表现为线性增长至峰值后稳定; 而当NHe ≥ 3.0%时, 间隙大团簇的形成会吸收间隙原子长大并降低湮灭速率, 导致FPs数量二次增长, 被空位环绕后, 不再阻碍复位, 数量二次稳定. 当NHe增至3.0%时, 单晶铁的弹性模量, 屈服强度和韧性分别下降了21%, 88%和57%, 此后氦浓度增大, 力学性能不再降低. 这是由于NHe < 3.0%时, 随着氦浓度上升, 氦致缺陷增多, 导致韧性降低, 促进位错形核, 使弹性模量和屈服强度下降; 而当NHe ≥ 3.0%时, 初始缺陷存在位错, 且团簇数量变化甚微, 韧性不再降低, 不影响位错形核, 弹性模量和屈服强度随之稳定. NHe = 3.0%时出现的大团簇阻碍滑移系滑移, 改变滑移平面方向, 削弱主滑移系作用, 导致小滑移带增多, 塑性变形机制由交滑移转变为滑移带相遇后分解为离散位错和点缺陷. 研究揭示了氦浓度对单晶铁缺陷演化及力学性能的影响规律和关键机制, 为聚变铁基材料设计提供理论依据.
    Understanding the intrinsic correlation between helium concentration and the evolution of defects as well as mechanical properties in low-activation steel on an atomic scale is crucial for designing fusion materials with excellent resistance to swelling and embrittlement. This study investigates the effect of helium concentration on single-crystal iron through molecular dynamics simulations, thereby clarifying the mechanisms by which helium concentration affects helium defect evolution, mechanical properties, and plastic deformation behavior of low-activation steel on an atomic scale. Models of body-centered cubic (BCC) iron with different helium concentrations (0.5%—4.5%) are established. Wigner-Seitz cell analysis and cluster clustering methods are employed to track the evolution of Frenkel Pairs (FPs) and cluster defects, revealing the mechanism of helium concentration-induced FPs and cluster formation at 500 ℃. Furthermore, combined with tensile mechanical simulations, the effects of helium behavior on the mechanical properties of single-crystal iron, such as elastic modulus, yield strength, and toughness, are analyzed, and the correlation mechanisms between helium concentration-induced defect evolution, mechanical properties, and plastic deformation behavior are revealed. The results show that when NHe < 3.0%, the number of FPs linearly reaches to a peak and then stabilizes. This is because helium behavior causes a rapid increase in the number of FPs and a large number of interstitial atoms are generated, some of which recombine. The annihilation rate of FPs increases with their number increasing and eventually equals the generation rate, resulting in a stable number of FPs. When NHe ≥ 3.0%, the initial increase and stabilization are the same as those for NHe < 3.0%. However, after the formation of large interstitial clusters, they absorb interstitial atoms and grow, hindering recombination and reducing the annihilation rate of FPs, thus leading to a secondary increase. The large clusters are surrounded by vacancies and no longer hinder FP recombination, and a new balance is achieved, resulting in a secondary stabilization of the FP number. When NHe increases to 3.0%, the elastic modulus, yield strength, and toughness of single-crystal iron decrease by 21%, 88%, and 57%, respectively; beyond this concentration, the mechanical properties no longer decrease. This is because when NHe < 3.0%, as helium concentration increases, helium-induced defects increase, leading to a decrease in toughness and promoting dislocation nucleation, thus reducing the elastic modulus and yield strength. When NHe ≥ 3.0%, dislocations exist in the initial defects, and the number of clusters changes slightly; toughness no longer decreases, and dislocation nucleation is not affected, leading to the stabilization of elastic modulus and yield strength. At NHe = 3.0%, the formation of large clusters hinders the movement of slip systems, changes the orientation of slip planes, weakens the effectiveness of the main slip system, which leads to an increase in small slip bands and causes the plastic deformation mechanism to transform from cross-slip to decomposition into discrete dislocations and point defects once the slip bands intersect with each other. This study reveals the influence patterns and key mechanisms of helium concentration on defect evolution and mechanical properties of single-crystal iron, providing a theoretical basis for designing fusion iron-based materials.
  • 图 1  含有不同氦浓度的单晶铁拉伸的分子动力学模型示意图及对应氦浓度模型 (a) 模型示意图; (b) NHe = 0.5%; (c) NHe = 1.5%; (d) NHe = 3.0%; (e) NHe = 4.5%. Fe原子被隐藏以更好地观察氦原子分布和形貌

    Fig. 1.  Schematic of molecular dynamics models for tensile deformation of single-crystal iron with different helium concentrations and corresponding models (a) Schematic of the model; (b) NHe = 0.5%; (c) NHe = 1.5%; (d) NHe = 3.0%; (e) NHe = 4.5%. Fe atoms are hidden to better observe the distribution and morphology of helium atoms.

    图 2  不同氦浓度单晶铁中缺陷演化过程 (a) NHe = 0.5%; (b) NHe = 1.5%; (c) NHe = 3.0%; (d) NHe = 4.5%. 红色小球代表空位, 蓝色小球代表间隙原子

    Fig. 2.  Defect evolution processes in single-crystal iron with different helium concentrations: (a) NHe = 0.5%; (b) NHe = 1.5%; (c) NHe = 3.0%; (d) NHe = 4.5%. Red spheres represent vacancies, and blue spheres represent interstitial atoms.

    图 3  弗仑克尔缺陷对数量

    Fig. 3.  Number of Frenkel pairs.

    图 4  缺陷演化最后阶段不同氦浓度的团簇分布图 (a) NHe = 0.5%; (b) NHe = 1.5%; (c) NHe = 3.0%; (d) NHe = 4.5%

    Fig. 4.  Distribution maps of clusters at the final stage of defect evolution with different helium concentrations: (a) NHe = 0.5%; (b) NHe = 1.5%; (c) NHe = 3.0%; (d) NHe = 4.5%.

    图 5  不同氦浓度单晶铁在稳定阶段的最大团簇尺寸

    Fig. 5.  Maximum cluster size of single-crystal iron with different helium concentrations at the stable stage.

    图 6  缺陷演化示意图 (a) NHe < 3.0%; (b) NHe ≥ 3.0%

    Fig. 6.  Schematic of defect evolution: (a) NHe < 3.0%; (b) NHe ≥ 3.0%.

    图 7  氦浓度对单晶铁力学行为的影响 (a) 应力应变曲线; (b) 弹性模量、屈服强度、韧性

    Fig. 7.  Effect of helium concentration on mechanical behavior of single-crystal iron: (a) Stress-strain curves; (b) elastic modulus, yield strength, and toughness.

    图 8  不同氦浓度的剪切应变云图 (a) 原始单晶铁; (b) NHe = 0.5%; (c) NHe = 1.5%; (d) NHe = 3.0%; (e) NHe = 4.5%

    Fig. 8.  Shear stress-strain contour plots after helium concentration effect: (a) Original single-crystal iron; (b) NHe = 0.5%; (c) NHe = 1.5%; (d) NHe = 3.0%; (e) NHe = 4.5%.

    图 9  无氦的单晶铁在拉伸过程中的原子构型演化 (a) ε = 0.003; (b) ε = 0.054; (c) ε = 0.108; (d) ε = 0.12; (e) ε = 0.135; (f) ε = 0.165; (g) ε = 0.189; (h) ε = 0.21; 灰白色原子表示“other”, 绿色表示“fcc”; 线条为位错线, 黑色表示“1/2$ \left\langle {111} \right\rangle $”, 蓝色表示“$ \left\langle {100} \right\rangle $”, 黄色表示“$ \left\langle {110} \right\rangle $”

    Fig. 9.  Atomic configuration evolution of single-crystal iron without helium concentration effect during tensile deformation: (a) ε = 0.003; (b) ε = 0.054; (c) ε = 0.108; (d) ε = 0.12; (e) ε = 0.135; (f) ε = 0.165; (g) ε = 0.189; (h) ε = 0.21; gray-white atoms denote “other”, green denotes “fcc”; lines are dislocation lines, black denotes “1/2$ \left\langle {111} \right\rangle $”, blue denotes “$ \left\langle {100} \right\rangle $”, and yellow denotes “$ \left\langle {110} \right\rangle $”.

    图 10  NHe = 0.5%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.048; (c) ε = 0.075; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.162; (g) ε = 0.186; (h) ε = 0.21

    Fig. 10.  Atomic configuration evolution of single-crystal iron with 0.5% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.048; (c) ε = 0.075; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.162; (g) ε = 0.186; (h) ε = 0.21.

    图 11  NHe = 1.5%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.024; (c) ε = 0.06; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.15; (g) ε = 0.174; (h) ε = 0.21

    Fig. 11.  Atomic configuration evolution of single-crystal iron with 1.5% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.024; (c) ε = 0.06; (d) ε = 0.096; (e) ε = 0.126; (f) ε = 0.15; (g) ε = 0.174; (h) ε = 0.21.

    图 12  NHe = 3.0%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.072; (e) ε = 0.12; (f) ε = 0.135; (g) ε = 0.18; (h) ε = 0.21

    Fig. 12.  Atomic configuration evolution of single-crystal iron with 3.0% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.072; (e) ε = 0.12; (f) ε = 0.135; (g) ε = 0.18; (h) ε = 0.21.

    图 13  NHe = 4.5%单晶铁在拉伸过程中的原子构型演化 (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.075; (e) ε = 0.126; (f) ε = 0.144; (g) ε = 0.189; (h) ε = 0.210

    Fig. 13.  Atomic configuration evolution of single-crystal iron with 4.5% helium concentration during tensile deformation: (a) ε = 0; (b) ε = 0.012; (c) ε = 0.03; (d) ε = 0.075; (e) ε = 0.126; (f) ε = 0.144; (g) ε = 0.189; (h) ε = 0.210.

    图 14  氦致塑性影响微观机制示意图 (a) NHe < 3.0%; (b) NHe ≥ 3.0%

    Fig. 14.  Schematic of micro-mechanisms for helium-induced plasticity: (a) NHe < 3.0%; (b) NHe ≥ 3.0%.

    Baidu
  • [1]

    Xie X Y, Mao C L, Liu C X, Luo J T, Liu Y C 2025 Int. J. Plast. 188 104313Google Scholar

    [2]

    Yu M, Liu X K, Liu H Z, Jin S X, Xiong Y, Guo L P, Zhang W P 2025 Radiat. Phys. Chem. 237 113035Google Scholar

    [3]

    Zhou H B, Wang J L, Jiang W, Lu G H, Aguiar J A, Liu F 2016 Acta Mater. 119 1Google Scholar

    [4]

    Yamamoto T, Odette G R, Miao P, Edwards D J, Kurtz R J 2009 J. Nucl. Mater. 386-388 338

    [5]

    Wang Y X, Xu Q, Yoshiie T, Pan Z Y 2008 J. Nucl. Mater. 376 133Google Scholar

    [6]

    Hetherly J, Martinez E, Di Z F, Nastasi M, Caro A 2012 Scr. Mater. 66 17Google Scholar

    [7]

    Han W Z, Demkowicz M J, Fu E G, Wang Y Q 2012 Misra A Acta Mater. 60 6341Google Scholar

    [8]

    Ullmaier H 1984 Nucl. Fusion 24 1039Google Scholar

    [9]

    Xia L D, Liu W B, Liu H P, Zhang J H, Chen H, Yang Z G, Zhang C 2018 Nucl. Eng. Technol. 50 132Google Scholar

    [10]

    Wei Y P, Liu P P, Zhu Y M, Wang Z Q, Wan F R, Zhan Q 2016 J. Alloys Compd. 676 481Google Scholar

    [11]

    Yang Z, Yang J Y, Liao Q, Xu S, Li B S 2021 Chin. Phys. B 30 056517

    [12]

    郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯 2016 65 077803Google Scholar

    Guo H Y, Xia M, Yan Q Z, Guo L P, Chen J H, Ge C C 2016 Acta Phys. Sin. 65 077803Google Scholar

    [13]

    Agarwal S, Bhattacharya A, Trocellier P, Zinkle S J 2019 Acta Mater. 163 14Google Scholar

    [14]

    Harrison R W, Greaves G, Hinks J A, Donnelly S E 2017 J. Nucl. Mater. 495 492Google Scholar

    [15]

    Morishita K, Sugano R, Wirth B D 2003 J. Nucl. Mater. 323 243Google Scholar

    [16]

    Tschopp M, Gao F, Solanki K 2016 Acta Mater. 124 544

    [17]

    Zhou Y L, Wang J, Hou Q, Deng A H 2014 J. Nucl. Mater. 446 49Google Scholar

    [18]

    陈敏, 汪俊, 侯氢 2009 58 1149Google Scholar

    Chen M, Wang J, Hou Q 2009 Acta Phys. Sin. 58 1149Google Scholar

    [19]

    Kobayashi R, Hattori T, Tamura T, Ogata S 2015 J. Nucl. Mater. 463 1071Google Scholar

    [20]

    Galloway G J, Ackland G J 2013 Phys. Rev. B 87 104106Google Scholar

    [21]

    Yu J N, Yu G, Yao Z W, Schäublin R 2007 J. Nucl. Mater. 367–370 462

    [22]

    Lucas G, Schäublin R 2008 J. Phys. Condens. Matter 20 415206Google Scholar

    [23]

    Hu N W, Deng H Q, Xiao S F, Hu W Y 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 303 72Google Scholar

    [24]

    Hu N W, Deng H Q, Wang C L, Hu W Y 2016 RSC Adv. 6 27113Google Scholar

    [25]

    Yang L, Deng H Q, Gao F, Heinisch H L, Kurtz R J, Hu S Y, Li Y L, Zu X T 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 303 68Google Scholar

    [26]

    Gao C, Tian D F, Li M S, Qian D Z 2018 Nucl. Instrum. Methods Phys. Res. Sect. B 418 46Google Scholar

    [27]

    Chen Y T, Morishita K 2022 Nucl. Mater. Energy 30 101150Google Scholar

    [28]

    Yang Y S, Wang L S 2022 Int. J. Hydrogen Energy 47 24398Google Scholar

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [30]

    Martínez E, Schwen D, Caro A 2015 Acta Mater. 84 208Google Scholar

    [31]

    Caro A, Hetherly J, Stukowski A, Caro M, Martínez E, Srivilliputhur S, Zepeda-Ruiz L, Nastasi M 2011 J. Nucl. Mater. 418 261Google Scholar

    [32]

    Wang L S, Yan S L, Meng M, Xue K M, Li P 2022 J. Nucl. Mater. 567 153818Google Scholar

    [33]

    Anento N, Serra A 2020 Comput. Mater. Sci. 179 109679Google Scholar

    [34]

    Li P, Wang L S, Yan S L, Meng M, Zhou Y F, Xue K M 2021 Int. J. Refract. Met. Hard Mater. 94 105376Google Scholar

    [35]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [36]

    Hoover W G 1986 Phys. Rev. A 34 2499Google Scholar

    [37]

    Gibson J B, Goland A N, Milgram M, Vineyard G H 1960 Phys. Rev. 120 1229Google Scholar

    [38]

    Nordlund K, Ghaly M, Averback R S, Caturla M, Diaz de la Rubia T, Tarus J 1998 Phys. Rev. B 57 7556Google Scholar

    [39]

    Barrett C D, Tschopp M A, El Kadiri H 2012 Scr. Mater. 66 666Google Scholar

    [40]

    Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [41]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [42]

    Stukowski A 2012 Modelling Simul. Mater. Sci. Eng. 20 045021Google Scholar

    [43]

    Stukowski A, Albe K 2010 Modelling Simul. Mater. Sci. Eng. 18 085001Google Scholar

    [44]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Modelling Simul. Mater. Sci. Eng. 20 085007Google Scholar

计量
  • 文章访问数:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-13
  • 修回日期:  2025-09-22
  • 上网日期:  2025-12-08

/

返回文章
返回
Baidu
map