搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多阶动态移焦的透皮给药增效研究

龚新越 薛洪惠 宋人杰 郭杨 马勇 屠娟

引用本文:
Citation:

基于多阶动态移焦的透皮给药增效研究

龚新越, 薛洪惠, 宋人杰, 郭杨, 马勇, 屠娟

Synergistic effect of ultrasound transdermal drug delivery based on multi-stage dynamic focal-shifting

GONG Xinyue, XUE Honghui, SONG Renjie, GUO Yang, MA Yong, TU Juan
cstr: 32037.14.aps.74.20251023
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对传统超声透皮给药技术中声场聚焦模式单一、药物粒子穿透深度及分布范围受限等关键瓶颈问题, 本研究提出了一种基于超声换能器阵列的多阶动态移焦发射策略, 旨在实现声能量在皮肤深度方向的动态重分布, 从而提升纳米粒子的透皮效率与分布均匀性. 通过调控换能器阵元激励相位, 构建多阶移动的声聚焦作用路径, 并通过在体动物实验与有限元仿真联合验证其透皮给药效果. 结果显示, 与固定焦点模式相比, 动态聚焦显著提升了药物粒子的经皮渗透深度与空间分布均匀性, 其平均渗透深度可提高65.7%, 荧光积分强度提升69.3%, 并在皮肤组织中形成更均匀的沉积带结构. 有限元仿真结果进一步揭示了该模式下粒子扩散演化行为与焦点动态轨迹之间的强耦合机制, 证实动态移焦模式下的“多焦点接力式”驱动效应可在显著优化粒子的经皮渗透效率的同时, 有效降低局部能量沉积引发的潜在风险, 为构建高效、安全、可控的超声透皮递药技术提供了重要的理论基础与技术支撑.
    Ultrasound-assisted transdermal drug delivery (UTDD) is a promising non-invasive strategy to overcome the skin barrier. The traditional fixed-focus ultrasound approaches encounter the problems such as limited penetration depth, localized accumulation, and risk of thermal damage. To address these challenges, we propose a phased-array based dynamic focusing strategy, in which the acoustic focus is shifted sequentially along the depth direction. This approach aims to construct a continuous longitudinal acoustic radiation pathway that can sustain particle migration into deeper skin layers. In vivo experiments are conducted with FITC-labeled nanoparticles on rat dorsal skin under three conditions: natural permeation, fixed focus (~0.5 mm beneath the skin), and dynamic focusing (scanned from the surface to 1 mm). After 10-min ultrasound, fluorescence microscopy reveals that fixed focus enhances penetration compared with natural permeation, while dynamic focusing further improves delivery, increasing average depth by 65.7%, maximum depth by 41.2%, and fluorescence intensity by 69.3%. Dynamic focusing also produces a more uniform and continuous deposition band, which is unlike the localized accumulation seen with fixed focus. To elucidate the underlying mechanisms, a two-dimensional finite element model is established in COMSOL Multiphysics. The simulation results reveal that this “multi-focus relay” effect provides a continuous driving force pathway, enabling particles to follow the shifting focal positions. Trajectory analysis confirms that the number of particles reaching deeper layers (up to 5 mm) increases by nearly 14 times under dynamic focusing compared with that in the case of fixed focus, while the width of the lateral distribution extends by 46.1%. In conclusion, both experimental and simulation results demonstrate that phased-array dynamic focusing significantly enhances penetration depth, migration efficiency, and distribution uniformity of nanoparticles in UTDD. By constructing a continuous acoustic radiation pathway in the depth dimension, this approach improves delivery efficiency while mitigating local energy accumulation, providing a safer and more effective strategy for ultrasound-mediated transdermal therapy.
      通信作者: 屠娟, juantu@nju.edu.cn
    • 基金项目: 江苏省科技计划专项(重点研发计划社会发展)项目(批准号: BE2023818)、中央高校基本科研业务费专项资金(批准号: 020414380195)和国家自然科学基金 (批准号: 12274220)资助的课题.
      Corresponding author: TU Juan, juantu@nju.edu.cn
    • Funds: Project supported by the Jiangsu Provincial Science and Technology Plan Special Fund (Key Research and Development Program - Social Development) Project, China (Grant No. BE2023818), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 020414380195), and the National Natural Science Foundation of China (Grant No. 12274220).
    [1]

    Jeong W Y, Kwon M, Choi H E, Kim K S 2021 Biomater. Res. 25 24Google Scholar

    [2]

    Gaikwad S S, Zanje A L, Somwanshi J D 2024 Int. J. Pharm. 652 123856Google Scholar

    [3]

    Wiedersberg S, Guy R H 2014 J. Controlled Release 190 150Google Scholar

    [4]

    Zhang H, Zhai Y J, Yang X Y, Zhai G X 2015 Curr. Pharm. Des. 12 2713Google Scholar

    [5]

    Prausnitz M R, Langer R 2008 Nat. Biotechnol. 26 1261Google Scholar

    [6]

    Polat B E, Deen W M, Langer R, Blankschtein D 2012 J. Controlled Release 158 250Google Scholar

    [7]

    Yu C, Shah A, Amiri N, et al. 2023 Adv. Mater. 35 2300066Google Scholar

    [8]

    Akhtar N, Singh V, Yusuf M, Khan R A 2020 Biomed. Eng.- Biomed. Tech. 65 243Google Scholar

    [9]

    Smith N B 2008 Expert Opin. Drug Deliv. 5 1107Google Scholar

    [10]

    Tian Y H, Liu Z, Tan H Y, Hou J H, Wen X, Yang F, Cheng W 2020 Int. J. Nanomed. 15 401Google Scholar

    [11]

    Sabbagh F, Muhamad I I, Niazmand R, Dikshit P K, Kim B S 2022 Int. J. Biol. Macromol. 203 222Google Scholar

    [12]

    Al-Bataineh O M, Lweesy K, Fraiwan L 2011 1st Middle East Conference on Biomedical Engineering Sharjah, United Arab Emirates, February 21–24, 2011 p316

    [13]

    Maione E, Shung K K, Meyer R J, et al. 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 49 1430Google Scholar

    [14]

    丁亚军, 钱盛友, 胡继文, 邹孝 2012 61 144301Google Scholar

    Ding Y J, Qian S Y, Hu J W, Zou X 2012 Acta Phys. Sin. 61 144301Google Scholar

    [15]

    徐丰, 陆明珠, 万明习, 方飞 2010 52 1349Google Scholar

    Xu F, Lu M Z, Wan X M, Fang F 2010 Acta Phys. Sin. 52 1349Google Scholar

    [16]

    Burgess A, Shah K, Hough O, Hynynen K 2015 Expert Rev. Neurother. 15 477Google Scholar

    [17]

    Meng Y, Hynynen K, Lipsman N 2021 Nat. Rev. Neurol. 17 7Google Scholar

    [18]

    Biskanaki F, Tertipi N, Sfyri E, Kefala V, Rallis E 2025 Appl. Sci. 15 4958Google Scholar

    [19]

    Özsoy Ç, Lafci B, Reiss M, Deán-Ben X L, Razansky D 2023 Photoacoustics 31 100508Google Scholar

    [20]

    钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩 2022 71 037201Google Scholar

    Qian J, Xi W, Zhou X W, Tan J W, Wang Z B, Du Y H, Li Y H 2022 Acta Phys. Sin. 71 037201Google Scholar

    [21]

    Zhang H J, Pan Y P, Hou Y, Li M H, Deng J, Wang B C, Hao S L 2024 Small 20 2306944Google Scholar

    [22]

    Caprifico A E, Polycarpou E, Foot P J S, Calabrese G 2020 Trends Pharmacol. Sci. 41 686Google Scholar

    [23]

    Moreno V M, Baeza A, Vallet-Regí M 2021 Acta Biomater. 121 263Google Scholar

    [24]

    Nguyen T T, Nguyen H N, Nghiem T H L, et al. 2024 Sci. Rep. 14 6969Google Scholar

    [25]

    Do Nascimento V M, Nantes Button V L D S, Maia J M, et al. 2003 Medical Imaging San Diego, United States, May 23, 2003 p86

    [26]

    Husseini G A, Pitt W G 2008 Adv. Drug Delivery Rev. 60 1137Google Scholar

    [27]

    Paris J L, Mannaris C, Cabañas M V, Carlisle R, Manzano M, Vallet-Regí M, Coussios C C 2018 Chem. Eng. J. 340 2Google Scholar

    [28]

    Gor'kov L P 1961 Dokl. Akad. Nauk SSSR 140 88

    [29]

    孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳 2011 60 094301Google Scholar

    Sun F, Zeng Z M, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301Google Scholar

    [30]

    Lintzeri D A, Karimian N, Blume-Peytavi U, Kottner J 2022 J. Eur. Acad. Dermatol. Venereol. 36 1191Google Scholar

  • 图 1  TDD药物吸收途径示意图

    Fig. 1.  Schematic diagram of TDD drug absorption pathway

    图 2  (a) 实验操作示意图; (b) 粒子渗透示意图, 其中绿色圆球为荧光粒子

    Fig. 2.  (a) Schematic diagram of experimental operation; (b) schematic diagram of particle penetration, where green spheres are fluorescent particles.

    图 3  (a) 聚焦发射的透皮给药原理示意图; (b) 有限元模型结构图

    Fig. 3.  (a) Schematic diagram of transdermal drug delivery principle with focused emission; (b) finite element model structure diagram

    图 4  荧光显微镜下的组织切片 (a)自然渗透组; (b)固定焦点聚焦组; (c)动态聚焦组

    Fig. 4.  Tissue sections under fluorescence microscope: (a) Natural infiltration group; (b) fixed focus group; (c) dynamic focus group in turn.

    图 5  组织切片荧光图像平均渗透深度、最大渗透深度、荧光积分强度三项指标柱状图

    Fig. 5.  Histogram of three indicators: average penetration depth, maximum penetration depth and fluorescence integral intensity of fluorescence images of tissue sections.

    图 6  动态聚焦情况下不同聚焦深度的声场仿真结果(a)焦点位于皮下1 mm; (b)焦点位于皮下2 mm; (c)焦点位于皮下3 mm

    Fig. 6.  Simulation results of acoustic field with different focusing depths under dynamic focusing: (a) The focus is 1 mm under the skin; (b) the focus is 2 mm under the skin; (c) the focus is 3 mm under the skin.

    图 7  运动至皮下5 mm处的粒子分布情况, 其中分布宽度为运动至皮下5 mm的粒子左右两端的距离(见图2(b))

    Fig. 7.  Distribution of particles moving to 5 mm under the skin. The distribution width is the distance between the left and right ends of particles moving to 5 mm under the skin, as shown in Fig. 2(b).

    图 8  5%, 10%和20%三种占空比条件下, 运动至皮下5 mm处的粒子数量

    Fig. 8.  The number of particles moving to 5 mm under the skin under three duty ratios of 5%, 10% and 20%.

    图 9  三种典型位置粒子在两种声场中的三维运动路径(对应粉、绿、紫曲线), 其中黑色虚线描绘了声场焦点中心的变化 (a)固定焦点聚焦声场; (b)动态移焦声场

    Fig. 9.  Three-dimensional motion paths of particles in three typical positions (corresponding to pink, green and purple curves) in two kinds of acoustic fields: (a) Acoustic field with fixed focus; (b) dynamically focused acoustic field. The black dotted line depicts the change of the focus center of the sound field.

    表 1  不同聚焦深度下的焦域参数

    Table 1.  Focal parameters at different depth of focus.

    预设焦点皮下深度焦点横向宽度/mm焦点纵向长度/mm
    x/mmy/mm
    0.001.000.933.63
    0.002.000.984.13
    0.003.001.054.56
    下载: 导出CSV
    Baidu
  • [1]

    Jeong W Y, Kwon M, Choi H E, Kim K S 2021 Biomater. Res. 25 24Google Scholar

    [2]

    Gaikwad S S, Zanje A L, Somwanshi J D 2024 Int. J. Pharm. 652 123856Google Scholar

    [3]

    Wiedersberg S, Guy R H 2014 J. Controlled Release 190 150Google Scholar

    [4]

    Zhang H, Zhai Y J, Yang X Y, Zhai G X 2015 Curr. Pharm. Des. 12 2713Google Scholar

    [5]

    Prausnitz M R, Langer R 2008 Nat. Biotechnol. 26 1261Google Scholar

    [6]

    Polat B E, Deen W M, Langer R, Blankschtein D 2012 J. Controlled Release 158 250Google Scholar

    [7]

    Yu C, Shah A, Amiri N, et al. 2023 Adv. Mater. 35 2300066Google Scholar

    [8]

    Akhtar N, Singh V, Yusuf M, Khan R A 2020 Biomed. Eng.- Biomed. Tech. 65 243Google Scholar

    [9]

    Smith N B 2008 Expert Opin. Drug Deliv. 5 1107Google Scholar

    [10]

    Tian Y H, Liu Z, Tan H Y, Hou J H, Wen X, Yang F, Cheng W 2020 Int. J. Nanomed. 15 401Google Scholar

    [11]

    Sabbagh F, Muhamad I I, Niazmand R, Dikshit P K, Kim B S 2022 Int. J. Biol. Macromol. 203 222Google Scholar

    [12]

    Al-Bataineh O M, Lweesy K, Fraiwan L 2011 1st Middle East Conference on Biomedical Engineering Sharjah, United Arab Emirates, February 21–24, 2011 p316

    [13]

    Maione E, Shung K K, Meyer R J, et al. 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 49 1430Google Scholar

    [14]

    丁亚军, 钱盛友, 胡继文, 邹孝 2012 61 144301Google Scholar

    Ding Y J, Qian S Y, Hu J W, Zou X 2012 Acta Phys. Sin. 61 144301Google Scholar

    [15]

    徐丰, 陆明珠, 万明习, 方飞 2010 52 1349Google Scholar

    Xu F, Lu M Z, Wan X M, Fang F 2010 Acta Phys. Sin. 52 1349Google Scholar

    [16]

    Burgess A, Shah K, Hough O, Hynynen K 2015 Expert Rev. Neurother. 15 477Google Scholar

    [17]

    Meng Y, Hynynen K, Lipsman N 2021 Nat. Rev. Neurol. 17 7Google Scholar

    [18]

    Biskanaki F, Tertipi N, Sfyri E, Kefala V, Rallis E 2025 Appl. Sci. 15 4958Google Scholar

    [19]

    Özsoy Ç, Lafci B, Reiss M, Deán-Ben X L, Razansky D 2023 Photoacoustics 31 100508Google Scholar

    [20]

    钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩 2022 71 037201Google Scholar

    Qian J, Xi W, Zhou X W, Tan J W, Wang Z B, Du Y H, Li Y H 2022 Acta Phys. Sin. 71 037201Google Scholar

    [21]

    Zhang H J, Pan Y P, Hou Y, Li M H, Deng J, Wang B C, Hao S L 2024 Small 20 2306944Google Scholar

    [22]

    Caprifico A E, Polycarpou E, Foot P J S, Calabrese G 2020 Trends Pharmacol. Sci. 41 686Google Scholar

    [23]

    Moreno V M, Baeza A, Vallet-Regí M 2021 Acta Biomater. 121 263Google Scholar

    [24]

    Nguyen T T, Nguyen H N, Nghiem T H L, et al. 2024 Sci. Rep. 14 6969Google Scholar

    [25]

    Do Nascimento V M, Nantes Button V L D S, Maia J M, et al. 2003 Medical Imaging San Diego, United States, May 23, 2003 p86

    [26]

    Husseini G A, Pitt W G 2008 Adv. Drug Delivery Rev. 60 1137Google Scholar

    [27]

    Paris J L, Mannaris C, Cabañas M V, Carlisle R, Manzano M, Vallet-Regí M, Coussios C C 2018 Chem. Eng. J. 340 2Google Scholar

    [28]

    Gor'kov L P 1961 Dokl. Akad. Nauk SSSR 140 88

    [29]

    孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳 2011 60 094301Google Scholar

    Sun F, Zeng Z M, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301Google Scholar

    [30]

    Lintzeri D A, Karimian N, Blume-Peytavi U, Kottner J 2022 J. Eur. Acad. Dermatol. Venereol. 36 1191Google Scholar

  • [1] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器.  , 2025, 74(4): 044303. doi: 10.7498/aps.74.20241326
    [2] 林基艳, 李耀, 陈诚, 林书玉, 郭林伟, 徐洁. 柱状和声学表面结构的压电超声换能器.  , 2025, 74(21): 214304. doi: 10.7498/aps.74.20250901
    [3] 叶文旭, 江昊, 王怡, 林书玉. 基于声黑洞结构的夹心式弯曲振动超声换能器.  , 2025, 74(18): 184302. doi: 10.7498/aps.74.20250767
    [4] 申潇卓, 吴鹏飞, 林伟军. 脉动气泡在黏性介质中的声发射.  , 2024, 73(17): 174701. doi: 10.7498/aps.73.20240826
    [5] 丁怡洋, 邹帅, 孙华, 苏晓东. 金属网格-透明导电氧化物复合型透明电极的瑞利分析和仿真.  , 2024, 73(14): 146801. doi: 10.7498/aps.73.20240230
    [6] 付亚鹏, 孙乾东, 李博艺, 他得安, 许凯亮. 基于RCA阵列三维超快超声血流成像方法仿真研究.  , 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [7] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获.  , 2023, 72(1): 014301. doi: 10.7498/aps.72.20221547
    [8] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟.  , 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [9] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测.  , 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [10] 曾胜洋, 贾璐, 张书增, 李雄兵, 王猛. 非线性表面波的二阶微扰解及特性分析.  , 2022, 71(16): 164301. doi: 10.7498/aps.71.20212445
    [11] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法.  , 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [12] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析.  , 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [13] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟.  , 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [14] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算.  , 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [15] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟.  , 2008, 57(11): 6722-6729. doi: 10.7498/aps.57.6722
    [16] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构.  , 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [17] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟.  , 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [18] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究.  , 2002, 51(4): 928-934. doi: 10.7498/aps.51.928
    [19] 杜功焕. 弛豫媒质中有限束超声波的非线性传播畸变理论.  , 1989, 38(6): 873-878. doi: 10.7498/aps.38.873
    [20] 应祟福, 李明轩, 钟高琦, 刘献铎, 杨玉瑞. 控制超声测量用换能器首次波幅度比的方案.  , 1981, 30(1): 91-96. doi: 10.7498/aps.30.91
计量
  • 文章访问数:  363
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-31
  • 修回日期:  2025-09-07
  • 上网日期:  2025-09-10

/

返回文章
返回
Baidu
map