- 
				通过分子动力学模拟研究乙烯-四氟乙烯共聚物(ETFE)在低气压下的击穿性能, 并通过低气压击穿实验对仿真结果进行验证, 从原子尺度揭示ETFE材料在低气压下绝缘失效机制. 首先, 对ETFE进行分子动力学模拟, 随着飞行高度从0 km逐渐增大到24 km, 模拟气压从101.300 kPa逐渐降低到2.951 kPa, ETFE的分子间距离增大9.692%, 链间相互作用能降低8.383%, 自由体积分数增大62.586%, 而密度下降7.737%. 其次, 基于电机械击穿理论, 推导得到ETFE击穿场强降低17.626%. 最后, 通过低气压击穿实验测得击穿场强下降40.078%, 密度测试得到密度下降1.574%. 仿真和实验结果均证明, ETFE的击穿场强随着气压的下降而降低. 这是由于处于低气压条件时, 自由体积分数的增加与密度的降低均为自由电子提供更长的自由行程; 而电荷陷阱能级的下降导致介质对电荷的束缚能力下降, 使自由电子浓度增加. 以上因素的共同作用导致ETFE在不同飞行高度下的击穿场强下降, 为ETFE在航空航天、高飞行高度极端环境下的应用提供了性能预测与失效机理分析, 对航空绝缘ETFE材料的优化设计具有指导意义.
- 
												关键词:
												
 - 乙烯-四氟乙烯共聚物 /
 - 低气压 /
 - 分子动力学 /
 - 击穿场强
 
By studying the breakdown performance of ethylene-tetrafluoroethylene (ETFE) copolymer under low pressure via molecular dynamics simulations, and verifying the simulation results through low-pressure breakdown experiments, the insulation failure mechanism of ETFE materials under low pressure can be revealed on an atomic scale. First, molecular dynamics simulations are performed on ETFE. As the flight altitude gradually increases from 0 km to 24 km, the simulated pressure decreases from 101.300 kPa to 2.951 kPa. Correspondingly, the intermolecular distance increases by 9.692%, the interchain interaction energy decreases by 8.383%, the free volume fraction of ETFE increases by 62.586%, and the density of ETFE decreases by 7.737%. Subsequently, based on the electromechanical breakdown theory, it is deduced that the breakdown field strength of ETFE decreases by 17.626%. Finally, the low-pressure breakdown experiment shows that the breakdown field strength decreases by 40.078%, and the density measurement test indicates that the density decreases by 1.574%. Both simulation and experimental results confirm that the breakdown field strength of ETFE decreases with the reduction of pressure. This is because under low-pressure conditions, the increase in free volume fraction and the decrease in density provide a longer mean free path for free electrons. And the decrease in charge trap level weakens the charge trapping capability, leading to a higher concentration of free electrons. All these factors contribute to the reduction of the breakdown field strength of ETFE. This study provides performance prediction and failure mechanism analysis for the application of ETFE in aerospace and high-altitude extreme environments, and has guiding significance for the optimal design of aerospace insulation ETFE materials.- 
													Keywords:
													
 - ethylene-tetrafluoroethylene /
 - low atmospheric pressure /
 - molecular dynamics /
 - breakdown field strength
 
[1] Yuan L J, Zheng X, Zhu W B, Wang B, Chen Y Y, Xing Y Q 2024 Polymers 16 316
Google Scholar
						[2] Ahmad J, Niasar M J 2025 J. Appl. Polym. Sci. 142 27
Google Scholar
						[3] Riba J R, Moreno-Eguilaz M, Ibrayemov T, Boizieau M 2022 Materials 15 1677
Google Scholar
						[4] Shahsavarian T, Li C, Baferani M A, Ronzello J, Cao Y, Wu X, Zhang D 2021 IEEE Trans. Dielectr. Electr. Insul. 28 231
Google Scholar
						[5] Shahsavarian T, Li C, Baferani M A, Cao Y 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena East Rutherford, USA, October 18–30, 2020 p271
[6] Bas-Calopa P, Riba J R, Moreno-Eguilaz M 2024 Proc. IEEE Int. Instrum. Meas. Technol. Conf. Glasgow, United Kingdom, May 20–23, 2024 p1
[7] Anoy S, Mona G 2024 IEEE J. Emerg. Sel. Top. Power Electron. 13 4521
Google Scholar
						[8] Al Otmi M, Willmore F, Sampath J 2023 Macromolecules 56 9042
Google Scholar
						[9] Guo G, Zhang J, Chen X, Zhao X, Deng J, Zhang G 2022 Comput. Mater. Sci. 212 111571
Google Scholar
						[10] Tamir E, Sidess A, Srebnik S 2019 Chem. Eng. Sci. 205 332
Google Scholar
						[11] 李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国 2025 74 127702
Google Scholar
						Li L L, Han S, Wang Y L, Liu T J, Li Y Z, Gao J G 2025 Acta Phys. Sin. 74 127702
Google Scholar
						[12] Wang J M, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H X, Luo R, Duan Y 2011 J. Phys. Chem. B 115 3100
Google Scholar
						[13] von Milczewski J, Tolsma J R 2021 Phys. Rev. B 104 125111
Google Scholar
						[14] Israelachvili J N 2011 Intermolecular and surface forces (Academic Press) p108
[15] Mazo M, Balabaev N, Alentiev A, Yampolskii Y 2018 Macromolecules 51 1398
Google Scholar
						[16] Sharma S K, Pujari P K 2017 Prog. Polym. Sci. 75 31
Google Scholar
						[17] Wong C P J, Choi P 2024 Phys. Fluids 36 033120
Google Scholar
						[18] Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M 2018 Mol. Pharm. 15 2807
Google Scholar
						[19] 李亚莎, 夏宇, 刘世冲, 瞿聪 2022 71 052101
Google Scholar
						Li Y S, Xia Y, Liu S C, Qu C 2022 Acta Phys. Sin. 71 052101
Google Scholar
						[20] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 73 027301
Google Scholar
						Song X F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301
Google Scholar
						[21] Tang X X, Ding C L, Yu S Q, Zhong C, Luo H, Chen S 2024 Small 20 2306034
Google Scholar
						[22] Konstantinou K, Elliott S R 2023 Phys. Status Solidi RRL 17 8
Google Scholar
						[23] Welwang W, Takada T, Tanaka Y, Li S T 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3144
Google Scholar
						[24] He G H, Luo H, Yan C F, Wan Y T, Wu D, Luo H, Liu Y, Chen S 2024 Energy Environ. Mater. 7 e12577
Google Scholar
						[25] Yang K R, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Song Z, Fu Y F 2021 ACS Appl. Mater. Interfaces. 13 25850
Google Scholar
						[26] 威廉H. 哈伊特 著 (赵彦珍 译) 2013 工程电磁场 (西安交通大学出版社) 第63页
Hayt W H (translated by Zhao Y Z) 2013 Engineering Electromagnetics (Xi’an Jiaotong University Press) p63
[27] 冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛 2025 74 087701
Google Scholar
						Feng Y, Zhang S, Zhou B, Liu P Y, Yang X R, Li S T 2025 Acta Phys. Sin. 74 087701
Google Scholar
						[28] Paleti S H K, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C 2024 Chem. Soc. Rev. 53 1702
Google Scholar
						[29] 徐芝纶 2006 弹性力学(北京: 高等教育出版社)
Xu Z L 2006 Theory of Elasticity (Beijing: Higher Education Press
[30] Deng F K, Wei J H, Xu Y D, Lin Z Q, Lü X, Wan Y J, Sun R, Wong C P, Hu Y 2023 Nano-Micro Lett. 15 106
Google Scholar
						[31] 虞健祥, 梁华琳, 杨轶钧, 明星 2025 74 077102
Google Scholar
						Yu J X, Liang H L, Yang Y J, Ming X 2025 Acta Phys. Sin. 74 077102
Google Scholar
						[32] 韦昭召 2025 74 036201
Google Scholar
						Wei Z Z 2025 Acta Phys. Sin. 74 036201
Google Scholar
						[33] Hill A J, Thornton A W, Hannink R H J, Moon J D, Freeman B D 2020 Corros. Eng. Sci. Technol. 55 145
Google Scholar
						[34] Cao Y Y, Cao W H, Yang X, Liu C X, Qi X W 2021 Polym. Adv. Technol. 33 146
Google Scholar
						[35] 陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第312页
Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing: China Machine Press) p312
[36] Stark S 2022 J. Eur. Ceram. Soc. 42 462
Google Scholar
						[37] Xing Z L, Gu Z L, Zhang C, Guo S W, Cui H Z, Lei Q Q, Li G C 2022 Energies 15 4412
Google Scholar
						[38] Kantar E, Eie-Klusmeier K K, Ve T A, Ese M H, Hvidsten S 2024 IEEE Trans. Dielectr. Electr. Insul. 32 416
Google Scholar
						[39] Sima W, Yin Z, Sun P T, Li L C, Shao Q Q, Yuan T, Yang M 2020 IEEE Trans. Dielectr. Electr. Insul. 27 2014
Google Scholar
						[40] Fica-Contreras S M, Li Z, Alamri A, Charnay A P, Pan J, Wu C, Lockwood J R, Yassin O, Shukla S, Sotzing G A, Cao Y, Fayer M D 2023 Mater. Today. 67 57
Google Scholar
						[41] Zhang M R, Zhu B F, Zhang X, Liu Z X, Wei X Y, Zhang Z C 2023 Mater. Horiz. 10 2455
Google Scholar
						[42] Min D M, Yan C Y, Mi R, Cui H Z, Li Y W, Wang W W, Fréchette M F, Li S T 2018 IEEE Nanotechnol. Mag. 12 15
Google Scholar
						[43] Wang J, Shen Z H, Liu R L, Shen Y, Chen L Q, Liu H X, Chen N W 2023 Adv. Sci. 10 2300320
Google Scholar
						 - 
				
    
    
    
表 1 不同飞行高度对应的气压值
Table 1. Barometric pressure values at different flight altitudes.
高度/km 气压值/kPa 0 101.300 7 41.150 10 26.520 14 14.190 17 8.857 24 2.951 表 2 不同飞行高度下ETFE平衡状态的动能和密度的变化率
Table 2. Rate of change of kinetic energy and density of ETFE in equilibrium state under different flight altitudes.
飞行高度/km 动能变化率/% 密度变化率/% 0 3.887 3.334 7 4.623 4.054 10 3.448 4.111 14 3.030 4.225 17 3.311 4.286 24 3.367 3.497 表 3 不同飞行高度下ETFE分子间距离
Table 3. Intermolecular distance of ETFE at different flight altitudes.
飞行高度/km 分子间距离/Å 0 5.675 7 5.775 10 5.825 14 5.975 17 6.075 24 6.225 表 4 不同飞行高度下ETFE的密度变化
Table 4. ETFE density measurement test at different flight altitudes.
高度/km 密度/(g·cm–3) 0 1.715 7 1.703 10 1.707 14 1.703 17 1.692 24 1.688  - 
				
[1] Yuan L J, Zheng X, Zhu W B, Wang B, Chen Y Y, Xing Y Q 2024 Polymers 16 316
Google Scholar
						[2] Ahmad J, Niasar M J 2025 J. Appl. Polym. Sci. 142 27
Google Scholar
						[3] Riba J R, Moreno-Eguilaz M, Ibrayemov T, Boizieau M 2022 Materials 15 1677
Google Scholar
						[4] Shahsavarian T, Li C, Baferani M A, Ronzello J, Cao Y, Wu X, Zhang D 2021 IEEE Trans. Dielectr. Electr. Insul. 28 231
Google Scholar
						[5] Shahsavarian T, Li C, Baferani M A, Cao Y 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena East Rutherford, USA, October 18–30, 2020 p271
[6] Bas-Calopa P, Riba J R, Moreno-Eguilaz M 2024 Proc. IEEE Int. Instrum. Meas. Technol. Conf. Glasgow, United Kingdom, May 20–23, 2024 p1
[7] Anoy S, Mona G 2024 IEEE J. Emerg. Sel. Top. Power Electron. 13 4521
Google Scholar
						[8] Al Otmi M, Willmore F, Sampath J 2023 Macromolecules 56 9042
Google Scholar
						[9] Guo G, Zhang J, Chen X, Zhao X, Deng J, Zhang G 2022 Comput. Mater. Sci. 212 111571
Google Scholar
						[10] Tamir E, Sidess A, Srebnik S 2019 Chem. Eng. Sci. 205 332
Google Scholar
						[11] 李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国 2025 74 127702
Google Scholar
						Li L L, Han S, Wang Y L, Liu T J, Li Y Z, Gao J G 2025 Acta Phys. Sin. 74 127702
Google Scholar
						[12] Wang J M, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H X, Luo R, Duan Y 2011 J. Phys. Chem. B 115 3100
Google Scholar
						[13] von Milczewski J, Tolsma J R 2021 Phys. Rev. B 104 125111
Google Scholar
						[14] Israelachvili J N 2011 Intermolecular and surface forces (Academic Press) p108
[15] Mazo M, Balabaev N, Alentiev A, Yampolskii Y 2018 Macromolecules 51 1398
Google Scholar
						[16] Sharma S K, Pujari P K 2017 Prog. Polym. Sci. 75 31
Google Scholar
						[17] Wong C P J, Choi P 2024 Phys. Fluids 36 033120
Google Scholar
						[18] Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M 2018 Mol. Pharm. 15 2807
Google Scholar
						[19] 李亚莎, 夏宇, 刘世冲, 瞿聪 2022 71 052101
Google Scholar
						Li Y S, Xia Y, Liu S C, Qu C 2022 Acta Phys. Sin. 71 052101
Google Scholar
						[20] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 73 027301
Google Scholar
						Song X F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301
Google Scholar
						[21] Tang X X, Ding C L, Yu S Q, Zhong C, Luo H, Chen S 2024 Small 20 2306034
Google Scholar
						[22] Konstantinou K, Elliott S R 2023 Phys. Status Solidi RRL 17 8
Google Scholar
						[23] Welwang W, Takada T, Tanaka Y, Li S T 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3144
Google Scholar
						[24] He G H, Luo H, Yan C F, Wan Y T, Wu D, Luo H, Liu Y, Chen S 2024 Energy Environ. Mater. 7 e12577
Google Scholar
						[25] Yang K R, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Song Z, Fu Y F 2021 ACS Appl. Mater. Interfaces. 13 25850
Google Scholar
						[26] 威廉H. 哈伊特 著 (赵彦珍 译) 2013 工程电磁场 (西安交通大学出版社) 第63页
Hayt W H (translated by Zhao Y Z) 2013 Engineering Electromagnetics (Xi’an Jiaotong University Press) p63
[27] 冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛 2025 74 087701
Google Scholar
						Feng Y, Zhang S, Zhou B, Liu P Y, Yang X R, Li S T 2025 Acta Phys. Sin. 74 087701
Google Scholar
						[28] Paleti S H K, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C 2024 Chem. Soc. Rev. 53 1702
Google Scholar
						[29] 徐芝纶 2006 弹性力学(北京: 高等教育出版社)
Xu Z L 2006 Theory of Elasticity (Beijing: Higher Education Press
[30] Deng F K, Wei J H, Xu Y D, Lin Z Q, Lü X, Wan Y J, Sun R, Wong C P, Hu Y 2023 Nano-Micro Lett. 15 106
Google Scholar
						[31] 虞健祥, 梁华琳, 杨轶钧, 明星 2025 74 077102
Google Scholar
						Yu J X, Liang H L, Yang Y J, Ming X 2025 Acta Phys. Sin. 74 077102
Google Scholar
						[32] 韦昭召 2025 74 036201
Google Scholar
						Wei Z Z 2025 Acta Phys. Sin. 74 036201
Google Scholar
						[33] Hill A J, Thornton A W, Hannink R H J, Moon J D, Freeman B D 2020 Corros. Eng. Sci. Technol. 55 145
Google Scholar
						[34] Cao Y Y, Cao W H, Yang X, Liu C X, Qi X W 2021 Polym. Adv. Technol. 33 146
Google Scholar
						[35] 陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第312页
Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing: China Machine Press) p312
[36] Stark S 2022 J. Eur. Ceram. Soc. 42 462
Google Scholar
						[37] Xing Z L, Gu Z L, Zhang C, Guo S W, Cui H Z, Lei Q Q, Li G C 2022 Energies 15 4412
Google Scholar
						[38] Kantar E, Eie-Klusmeier K K, Ve T A, Ese M H, Hvidsten S 2024 IEEE Trans. Dielectr. Electr. Insul. 32 416
Google Scholar
						[39] Sima W, Yin Z, Sun P T, Li L C, Shao Q Q, Yuan T, Yang M 2020 IEEE Trans. Dielectr. Electr. Insul. 27 2014
Google Scholar
						[40] Fica-Contreras S M, Li Z, Alamri A, Charnay A P, Pan J, Wu C, Lockwood J R, Yassin O, Shukla S, Sotzing G A, Cao Y, Fayer M D 2023 Mater. Today. 67 57
Google Scholar
						[41] Zhang M R, Zhu B F, Zhang X, Liu Z X, Wei X Y, Zhang Z C 2023 Mater. Horiz. 10 2455
Google Scholar
						[42] Min D M, Yan C Y, Mi R, Cui H Z, Li Y W, Wang W W, Fréchette M F, Li S T 2018 IEEE Nanotechnol. Mag. 12 15
Google Scholar
						[43] Wang J, Shen Z H, Liu R L, Shen Y, Chen L Q, Liu H X, Chen N W 2023 Adv. Sci. 10 2300320
Google Scholar
						 
计量
- 文章访问数: 433
 - PDF下载量: 9
 - 被引次数: 0
 


					
		        
	        
 
										





							
下载: