搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同飞行高度对ETFE航空用电缆绝缘击穿性能的影响机理

李丽丽 李育哲 李晓坤 付磊 王玉龙 韩爽 高俊国

引用本文:
Citation:

不同飞行高度对ETFE航空用电缆绝缘击穿性能的影响机理

李丽丽, 李育哲, 李晓坤, 付磊, 王玉龙, 韩爽, 高俊国

Mechanism of influence of different flight altitudes on insulation breakdown performance of ETFE aviation cables

LI Lili, LI Yuzhe, LI Xiaokun, FU Lei, WANG Yulong, HAN Shuang, GAO Junguo
cstr: 32037.14.aps.74.20250932
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通过分子动力学模拟研究乙烯-四氟乙烯共聚物(ETFE)在低气压下的击穿性能, 并通过低气压击穿实验对仿真结果进行验证, 从原子尺度揭示ETFE材料在低气压下绝缘失效机制. 首先, 对ETFE进行分子动力学模拟, 随着飞行高度从0 km逐渐增大到24 km, 模拟气压从101.300 kPa逐渐降低到2.951 kPa, ETFE的分子间距离增大9.692%, 链间相互作用能降低8.383%, 自由体积分数增大62.586%, 而密度下降7.737%. 其次, 基于电机械击穿理论, 推导得到ETFE击穿场强降低17.626%. 最后, 通过低气压击穿实验测得击穿场强下降40.078%, 密度测试得到密度下降1.574%. 仿真和实验结果均证明, ETFE的击穿场强随着气压的下降而降低. 这是由于处于低气压条件时, 自由体积分数的增加与密度的降低均为自由电子提供更长的自由行程; 而电荷陷阱能级的下降导致介质对电荷的束缚能力下降, 使自由电子浓度增加. 以上因素的共同作用导致ETFE在不同飞行高度下的击穿场强下降, 为ETFE在航空航天、高飞行高度极端环境下的应用提供了性能预测与失效机理分析, 对航空绝缘ETFE材料的优化设计具有指导意义.
    By studying the breakdown performance of ethylene-tetrafluoroethylene (ETFE) copolymer under low pressure via molecular dynamics simulations, and verifying the simulation results through low-pressure breakdown experiments, the insulation failure mechanism of ETFE materials under low pressure can be revealed on an atomic scale. First, molecular dynamics simulations are performed on ETFE. As the flight altitude gradually increases from 0 km to 24 km, the simulated pressure decreases from 101.300 kPa to 2.951 kPa. Correspondingly, the intermolecular distance increases by 9.692%, the interchain interaction energy decreases by 8.383%, the free volume fraction of ETFE increases by 62.586%, and the density of ETFE decreases by 7.737%. Subsequently, based on the electromechanical breakdown theory, it is deduced that the breakdown field strength of ETFE decreases by 17.626%. Finally, the low-pressure breakdown experiment shows that the breakdown field strength decreases by 40.078%, and the density measurement test indicates that the density decreases by 1.574%. Both simulation and experimental results confirm that the breakdown field strength of ETFE decreases with the reduction of pressure. This is because under low-pressure conditions, the increase in free volume fraction and the decrease in density provide a longer mean free path for free electrons. And the decrease in charge trap level weakens the charge trapping capability, leading to a higher concentration of free electrons. All these factors contribute to the reduction of the breakdown field strength of ETFE. This study provides performance prediction and failure mechanism analysis for the application of ETFE in aerospace and high-altitude extreme environments, and has guiding significance for the optimal design of aerospace insulation ETFE materials.
      通信作者: 王玉龙, wangyulong@hrbust.edu.cn
      Corresponding author: WANG Yulong, wangyulong@hrbust.edu.cn
    [1]

    Yuan L J, Zheng X, Zhu W B, Wang B, Chen Y Y, Xing Y Q 2024 Polymers 16 316Google Scholar

    [2]

    Ahmad J, Niasar M J 2025 J. Appl. Polym. Sci. 142 27Google Scholar

    [3]

    Riba J R, Moreno-Eguilaz M, Ibrayemov T, Boizieau M 2022 Materials 15 1677Google Scholar

    [4]

    Shahsavarian T, Li C, Baferani M A, Ronzello J, Cao Y, Wu X, Zhang D 2021 IEEE Trans. Dielectr. Electr. Insul. 28 231Google Scholar

    [5]

    Shahsavarian T, Li C, Baferani M A, Cao Y 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena East Rutherford, USA, October 18–30, 2020 p271

    [6]

    Bas-Calopa P, Riba J R, Moreno-Eguilaz M 2024 Proc. IEEE Int. Instrum. Meas. Technol. Conf. Glasgow, United Kingdom, May 20–23, 2024 p1

    [7]

    Anoy S, Mona G 2024 IEEE J. Emerg. Sel. Top. Power Electron. 13 4521Google Scholar

    [8]

    Al Otmi M, Willmore F, Sampath J 2023 Macromolecules 56 9042Google Scholar

    [9]

    Guo G, Zhang J, Chen X, Zhao X, Deng J, Zhang G 2022 Comput. Mater. Sci. 212 111571Google Scholar

    [10]

    Tamir E, Sidess A, Srebnik S 2019 Chem. Eng. Sci. 205 332Google Scholar

    [11]

    李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国 2025 74 127702Google Scholar

    Li L L, Han S, Wang Y L, Liu T J, Li Y Z, Gao J G 2025 Acta Phys. Sin. 74 127702Google Scholar

    [12]

    Wang J M, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H X, Luo R, Duan Y 2011 J. Phys. Chem. B 115 3100Google Scholar

    [13]

    von Milczewski J, Tolsma J R 2021 Phys. Rev. B 104 125111Google Scholar

    [14]

    Israelachvili J N 2011 Intermolecular and surface forces (Academic Press) p108

    [15]

    Mazo M, Balabaev N, Alentiev A, Yampolskii Y 2018 Macromolecules 51 1398Google Scholar

    [16]

    Sharma S K, Pujari P K 2017 Prog. Polym. Sci. 75 31Google Scholar

    [17]

    Wong C P J, Choi P 2024 Phys. Fluids 36 033120Google Scholar

    [18]

    Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M 2018 Mol. Pharm. 15 2807Google Scholar

    [19]

    李亚莎, 夏宇, 刘世冲, 瞿聪 2022 71 052101Google Scholar

    Li Y S, Xia Y, Liu S C, Qu C 2022 Acta Phys. Sin. 71 052101Google Scholar

    [20]

    宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 73 027301Google Scholar

    Song X F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301Google Scholar

    [21]

    Tang X X, Ding C L, Yu S Q, Zhong C, Luo H, Chen S 2024 Small 20 2306034Google Scholar

    [22]

    Konstantinou K, Elliott S R 2023 Phys. Status Solidi RRL 17 8Google Scholar

    [23]

    Welwang W, Takada T, Tanaka Y, Li S T 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3144Google Scholar

    [24]

    He G H, Luo H, Yan C F, Wan Y T, Wu D, Luo H, Liu Y, Chen S 2024 Energy Environ. Mater. 7 e12577Google Scholar

    [25]

    Yang K R, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Song Z, Fu Y F 2021 ACS Appl. Mater. Interfaces. 13 25850Google Scholar

    [26]

    威廉H. 哈伊特 著 (赵彦珍 译) 2013 工程电磁场 (西安交通大学出版社) 第63页

    Hayt W H (translated by Zhao Y Z) 2013 Engineering Electromagnetics (Xi’an Jiaotong University Press) p63

    [27]

    冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛 2025 74 087701Google Scholar

    Feng Y, Zhang S, Zhou B, Liu P Y, Yang X R, Li S T 2025 Acta Phys. Sin. 74 087701Google Scholar

    [28]

    Paleti S H K, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C 2024 Chem. Soc. Rev. 53 1702Google Scholar

    [29]

    徐芝纶 2006 弹性力学(北京: 高等教育出版社)

    Xu Z L 2006 Theory of Elasticity (Beijing: Higher Education Press

    [30]

    Deng F K, Wei J H, Xu Y D, Lin Z Q, Lü X, Wan Y J, Sun R, Wong C P, Hu Y 2023 Nano-Micro Lett. 15 106Google Scholar

    [31]

    虞健祥, 梁华琳, 杨轶钧, 明星 2025 74 077102Google Scholar

    Yu J X, Liang H L, Yang Y J, Ming X 2025 Acta Phys. Sin. 74 077102Google Scholar

    [32]

    韦昭召 2025 74 036201Google Scholar

    Wei Z Z 2025 Acta Phys. Sin. 74 036201Google Scholar

    [33]

    Hill A J, Thornton A W, Hannink R H J, Moon J D, Freeman B D 2020 Corros. Eng. Sci. Technol. 55 145Google Scholar

    [34]

    Cao Y Y, Cao W H, Yang X, Liu C X, Qi X W 2021 Polym. Adv. Technol. 33 146Google Scholar

    [35]

    陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第312页

    Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing: China Machine Press) p312

    [36]

    Stark S 2022 J. Eur. Ceram. Soc. 42 462Google Scholar

    [37]

    Xing Z L, Gu Z L, Zhang C, Guo S W, Cui H Z, Lei Q Q, Li G C 2022 Energies 15 4412Google Scholar

    [38]

    Kantar E, Eie-Klusmeier K K, Ve T A, Ese M H, Hvidsten S 2024 IEEE Trans. Dielectr. Electr. Insul. 32 416Google Scholar

    [39]

    Sima W, Yin Z, Sun P T, Li L C, Shao Q Q, Yuan T, Yang M 2020 IEEE Trans. Dielectr. Electr. Insul. 27 2014Google Scholar

    [40]

    Fica-Contreras S M, Li Z, Alamri A, Charnay A P, Pan J, Wu C, Lockwood J R, Yassin O, Shukla S, Sotzing G A, Cao Y, Fayer M D 2023 Mater. Today. 67 57Google Scholar

    [41]

    Zhang M R, Zhu B F, Zhang X, Liu Z X, Wei X Y, Zhang Z C 2023 Mater. Horiz. 10 2455Google Scholar

    [42]

    Min D M, Yan C Y, Mi R, Cui H Z, Li Y W, Wang W W, Fréchette M F, Li S T 2018 IEEE Nanotechnol. Mag. 12 15Google Scholar

    [43]

    Wang J, Shen Z H, Liu R L, Shen Y, Chen L Q, Liu H X, Chen N W 2023 Adv. Sci. 10 2300320Google Scholar

  • 图 1  ETFE不同飞行高度下的性能研究

    Fig. 1.  Performance study of ETFE at different flight altitudes.

    图 2  ETFE模型 (a) ETFE单体模型; (b) 分子链模型; (c) ETFE聚合物模型

    Fig. 2.  ETFE model: (a) ETFE monomer model; (b) molecular chain model; (c) ETFE polymer model.

    图 3  ETFE分子动力学模拟的温度变化曲线

    Fig. 3.  Temperature variation curve of ETFE molecular dynamics simulation.

    图 4  ETFE分子动力学模拟的能量变化曲线

    Fig. 4.  Energy variation curves of ETFE molecular dynamics simulation.

    图 5  ETFE分子动力学模拟的密度变化曲线

    Fig. 5.  Density variation curve of ETFE molecular dynamics simulation.

    图 6  不同飞行高度下ETFE分子动力学模拟平衡状态模型 (a) 0 km; (b) 7 km; (c) 10 km; (d) 14 km; (e) 17 km; (f) 24 km

    Fig. 6.  Equilibrium state model of ETFE molecular dynamics simulation at different flight altitudes: (a) 0 km; (b) 7 km; (c) 10 km; (d) 14 km; (e) 17 km; (f) 24 km.

    图 7  在ETFE中通过标记不同链H和F测量分子间距离

    Fig. 7.  Intermolecular distances are measured in ETFE by labeling different chains H and F.

    图 8  ETFE分子间距离对应的RDF图

    Fig. 8.  RDF graph corresponding to intermolecular distance of ETFE.

    图 9  ETFE的分子间相互作用能随飞行高度的变化

    Fig. 9.  Variation of intermolecular interaction energy of ETFE with flight altitude.

    图 10  ETFE的相对介电常数随飞行高度的变化

    Fig. 10.  Variation of the relative dielectric constant of ETFE with flight altitude.

    图 11  ETFE的自由体积分数随飞行高度的变化

    Fig. 11.  Variation of the free volume fraction of ETFE with flight altitude.

    图 12  不同飞行高度下ETFE模型的自由体积变化 (a) 飞行高度0 km; (b) 飞行高度7 km; (c) 飞行高度10 km; (d) 飞行高度14 km; (e) 飞行高度17 km; (f) 飞行高度24 km

    Fig. 12.  Variation of free volume of ETFE model at different flight altitudes: (a) 0 km; (b) 7 km; (c) 10 km; (d) 14 km; (e) 17 km; (f) 24 km.

    图 13  ETFE的密度随飞行高度的变化

    Fig. 13.  Variation of the density of ETFE with flight altitude.

    图 14  ETFE的电荷陷阱能级随飞行高度的变化

    Fig. 14.  Variation of the charge trap energy level of ETFE with flight altitude.

    图 15  不同气压下ETFE的击穿场强和杨氏模量

    Fig. 15.  Breakdown field strength and Young’s modulus of ETFE at different air pressures.

    图 16  变气压击穿实验装置接线图

    Fig. 16.  Wiring diagram of the variable pressure breakdown experimental setup.

    图 17  不同飞行高度下ETFE击穿场强的Weibull累积概率分布

    Fig. 17.  Weibull cumulative probability distribution of ETFE breakdown field strength at different flight altitudes.

    表 1  不同飞行高度对应的气压值

    Table 1.  Barometric pressure values at different flight altitudes.

    高度/km气压值/kPa
    0101.300
    741.150
    1026.520
    1414.190
    178.857
    242.951
    下载: 导出CSV

    表 2  不同飞行高度下ETFE平衡状态的动能和密度的变化率

    Table 2.  Rate of change of kinetic energy and density of ETFE in equilibrium state under different flight altitudes.

    飞行高度/km动能变化率/%密度变化率/%
    03.8873.334
    74.6234.054
    103.4484.111
    143.0304.225
    173.3114.286
    243.3673.497
    下载: 导出CSV

    表 3  不同飞行高度下ETFE分子间距离

    Table 3.  Intermolecular distance of ETFE at different flight altitudes.

    飞行高度/km分子间距离/Å
    05.675
    75.775
    105.825
    145.975
    176.075
    246.225
    下载: 导出CSV

    表 4  不同飞行高度下ETFE的密度变化

    Table 4.  ETFE density measurement test at different flight altitudes.

    高度/km密度/(g·cm–3)
    01.715
    71.703
    101.707
    141.703
    171.692
    241.688
    下载: 导出CSV
    Baidu
  • [1]

    Yuan L J, Zheng X, Zhu W B, Wang B, Chen Y Y, Xing Y Q 2024 Polymers 16 316Google Scholar

    [2]

    Ahmad J, Niasar M J 2025 J. Appl. Polym. Sci. 142 27Google Scholar

    [3]

    Riba J R, Moreno-Eguilaz M, Ibrayemov T, Boizieau M 2022 Materials 15 1677Google Scholar

    [4]

    Shahsavarian T, Li C, Baferani M A, Ronzello J, Cao Y, Wu X, Zhang D 2021 IEEE Trans. Dielectr. Electr. Insul. 28 231Google Scholar

    [5]

    Shahsavarian T, Li C, Baferani M A, Cao Y 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena East Rutherford, USA, October 18–30, 2020 p271

    [6]

    Bas-Calopa P, Riba J R, Moreno-Eguilaz M 2024 Proc. IEEE Int. Instrum. Meas. Technol. Conf. Glasgow, United Kingdom, May 20–23, 2024 p1

    [7]

    Anoy S, Mona G 2024 IEEE J. Emerg. Sel. Top. Power Electron. 13 4521Google Scholar

    [8]

    Al Otmi M, Willmore F, Sampath J 2023 Macromolecules 56 9042Google Scholar

    [9]

    Guo G, Zhang J, Chen X, Zhao X, Deng J, Zhang G 2022 Comput. Mater. Sci. 212 111571Google Scholar

    [10]

    Tamir E, Sidess A, Srebnik S 2019 Chem. Eng. Sci. 205 332Google Scholar

    [11]

    李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国 2025 74 127702Google Scholar

    Li L L, Han S, Wang Y L, Liu T J, Li Y Z, Gao J G 2025 Acta Phys. Sin. 74 127702Google Scholar

    [12]

    Wang J M, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H X, Luo R, Duan Y 2011 J. Phys. Chem. B 115 3100Google Scholar

    [13]

    von Milczewski J, Tolsma J R 2021 Phys. Rev. B 104 125111Google Scholar

    [14]

    Israelachvili J N 2011 Intermolecular and surface forces (Academic Press) p108

    [15]

    Mazo M, Balabaev N, Alentiev A, Yampolskii Y 2018 Macromolecules 51 1398Google Scholar

    [16]

    Sharma S K, Pujari P K 2017 Prog. Polym. Sci. 75 31Google Scholar

    [17]

    Wong C P J, Choi P 2024 Phys. Fluids 36 033120Google Scholar

    [18]

    Pacułt J, Rams-Baron M, Chrząszcz B, Jachowicz R, Paluch M 2018 Mol. Pharm. 15 2807Google Scholar

    [19]

    李亚莎, 夏宇, 刘世冲, 瞿聪 2022 71 052101Google Scholar

    Li Y S, Xia Y, Liu S C, Qu C 2022 Acta Phys. Sin. 71 052101Google Scholar

    [20]

    宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 73 027301Google Scholar

    Song X F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301Google Scholar

    [21]

    Tang X X, Ding C L, Yu S Q, Zhong C, Luo H, Chen S 2024 Small 20 2306034Google Scholar

    [22]

    Konstantinou K, Elliott S R 2023 Phys. Status Solidi RRL 17 8Google Scholar

    [23]

    Welwang W, Takada T, Tanaka Y, Li S T 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3144Google Scholar

    [24]

    He G H, Luo H, Yan C F, Wan Y T, Wu D, Luo H, Liu Y, Chen S 2024 Energy Environ. Mater. 7 e12577Google Scholar

    [25]

    Yang K R, Chen W J, Zhao Y S, He Y, Chen X, Du B, Yang W, Song Z, Fu Y F 2021 ACS Appl. Mater. Interfaces. 13 25850Google Scholar

    [26]

    威廉H. 哈伊特 著 (赵彦珍 译) 2013 工程电磁场 (西安交通大学出版社) 第63页

    Hayt W H (translated by Zhao Y Z) 2013 Engineering Electromagnetics (Xi’an Jiaotong University Press) p63

    [27]

    冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛 2025 74 087701Google Scholar

    Feng Y, Zhang S, Zhou B, Liu P Y, Yang X R, Li S T 2025 Acta Phys. Sin. 74 087701Google Scholar

    [28]

    Paleti S H K, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C 2024 Chem. Soc. Rev. 53 1702Google Scholar

    [29]

    徐芝纶 2006 弹性力学(北京: 高等教育出版社)

    Xu Z L 2006 Theory of Elasticity (Beijing: Higher Education Press

    [30]

    Deng F K, Wei J H, Xu Y D, Lin Z Q, Lü X, Wan Y J, Sun R, Wong C P, Hu Y 2023 Nano-Micro Lett. 15 106Google Scholar

    [31]

    虞健祥, 梁华琳, 杨轶钧, 明星 2025 74 077102Google Scholar

    Yu J X, Liang H L, Yang Y J, Ming X 2025 Acta Phys. Sin. 74 077102Google Scholar

    [32]

    韦昭召 2025 74 036201Google Scholar

    Wei Z Z 2025 Acta Phys. Sin. 74 036201Google Scholar

    [33]

    Hill A J, Thornton A W, Hannink R H J, Moon J D, Freeman B D 2020 Corros. Eng. Sci. Technol. 55 145Google Scholar

    [34]

    Cao Y Y, Cao W H, Yang X, Liu C X, Qi X W 2021 Polym. Adv. Technol. 33 146Google Scholar

    [35]

    陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第312页

    Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing: China Machine Press) p312

    [36]

    Stark S 2022 J. Eur. Ceram. Soc. 42 462Google Scholar

    [37]

    Xing Z L, Gu Z L, Zhang C, Guo S W, Cui H Z, Lei Q Q, Li G C 2022 Energies 15 4412Google Scholar

    [38]

    Kantar E, Eie-Klusmeier K K, Ve T A, Ese M H, Hvidsten S 2024 IEEE Trans. Dielectr. Electr. Insul. 32 416Google Scholar

    [39]

    Sima W, Yin Z, Sun P T, Li L C, Shao Q Q, Yuan T, Yang M 2020 IEEE Trans. Dielectr. Electr. Insul. 27 2014Google Scholar

    [40]

    Fica-Contreras S M, Li Z, Alamri A, Charnay A P, Pan J, Wu C, Lockwood J R, Yassin O, Shukla S, Sotzing G A, Cao Y, Fayer M D 2023 Mater. Today. 67 57Google Scholar

    [41]

    Zhang M R, Zhu B F, Zhang X, Liu Z X, Wei X Y, Zhang Z C 2023 Mater. Horiz. 10 2455Google Scholar

    [42]

    Min D M, Yan C Y, Mi R, Cui H Z, Li Y W, Wang W W, Fréchette M F, Li S T 2018 IEEE Nanotechnol. Mag. 12 15Google Scholar

    [43]

    Wang J, Shen Z H, Liu R L, Shen Y, Chen L Q, Liu H X, Chen N W 2023 Adv. Sci. 10 2300320Google Scholar

  • [1] 杨欢, 郑雨军. 分子动力学中的几何相位.  , 2025, 74(15): 150201. doi: 10.7498/aps.74.20250388
    [2] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [3] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究.  , 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟.  , 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究.  , 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [6] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟.  , 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [7] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [9] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响.  , 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [10] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究.  , 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [11] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [12] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [13] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算.  , 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析.  , 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [15] 马颖. 非晶态石英的变电荷分子动力学模拟.  , 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [17] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究.  , 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  433
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-14
  • 修回日期:  2025-08-10
  • 上网日期:  2025-09-19

/

返回文章
返回
Baidu
map