搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子身份认证研究进展

王兴福 郑艳艳 顾世浦 张琦 钟伟 杜明明 李喜云 沈淑婷 张安蕾 周澜 盛宇波

引用本文:
Citation:

量子身份认证研究进展

王兴福, 郑艳艳, 顾世浦, 张琦, 钟伟, 杜明明, 李喜云, 沈淑婷, 张安蕾, 周澜, 盛宇波

Latest research progress of quantum identity authentication

WANG Xingfu, ZHENG Yanyan, GU Shipu, ZHANG Qi, ZHONG Wei, DU Mingming, LI Xiyun, SHEN Shuting, ZHANG Anlei, ZHOU Lan, SHENG Yubo
cstr: 32037.14.aps.74.20250920
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子通信具有感知窃听的功能, 这是其区别于经典通信而独有的优势, 能够为信息安全提供新的保障. 在实际应用中, 量子通信具有绝对安全性的前提是所有通信方均是合法通信方, 然而, 这在实际通信环境中难以保证, 为量子保密通信带来安全性隐患. 因此, 在通信之前对通信方进行身份认证具有重要意义. 量子身份认证利用量子力学基本原理在通信方之间实现单向或双向身份认证, 并能确保身份认证码的绝对安全, 在量子通信领域具有重要的研究价值. 本文系统地梳理了量子身份认证协议的研究历程, 根据所需的不同量子资源对基于单光子、纠缠态、连续变量、混合型变量的量子身份认证协议进行介绍, 又根据身份认证过程中使用的量子协议类型, 介绍了基于量子密钥分发、量子安全直接通信、量子隐形传态以及乒乓协议框架的量子身份认证协议, 并分析各类协议在效率、安全性及实用化方面的优缺点. 最后, 详细地介绍了最新的量子身份认证协议——基于GHZ态的多方同步身份认证协议以及具有身份认证功能的极化-空间超编码的三方量子安全直接通信协议, 并对量子身份认证的未来发展方向以及在量子通信领域的应用潜力进行展望. 本综述可为未来量子身份认证的实用化发展提供理论支持.
    The absolute security of quantum communication protocols relies on a critical premise: all participating parties are legitimate users. Ensuring the legitimacy of participant identities is paramount in complex real-world communication environments. Quantum identity authentication (QIA), in which fundamental principles of quantum mechanics are used to achieve unilateral or mutual authentication between communicating parties, constitutes an indispensable core component for building a comprehensive quantum secure communication system. It holds significant research value in the field of quantum communication.This review employs a comparative classification method to systematically outline the research trajectory of QIA protocols. By categorizing protocols based on the required quantum resources and the types of quantum protocols employed, the advantages and disadvantages of various categories are analyzed in terms of efficiency, security, and practicality. Single-photon protocols require low resources, and they are easy to implement, and compatible with existing optical components, but require high-efficiency single-photon detectors and exhibit weak noise resistance. Entangled-state protocols offer high security and strong resistance to eavesdropping, particularly suitable for long-distance or multi-party authentication. However, they greatly depend on the preparation and maintenance of high-precision, stable multi-particle entanglement sources, resulting in high experimental complexity. Continuous-variable (CV) protocols achieve high transmission efficiency in short-distance metropolitan area networks and are compatible with classical optical communication equipment, making experiments relatively straightforward. Yet, they require high-precision modulation technology and are sensitive to channel loss. Hybrid protocols aim to balance resource efficiency and security while reducing reliance on a single quantum source, but their design is complex and may introduce new attack vectors. Quantum key distribution (QKD) framework protocols embed identity authentication in the key distribution process, making them suitable for scenarios requiring long-term secure key distribution, although they often depend on pre-shared keys or trusted third parties. Quantum secure direct communication (QSDC) framework protocols integrate authentication with secure direct information transmission, offering high efficiency for real-time communication, but requiring high channel quality. Measurement-device-independent QSDC (MDI-QSDC) represents a key development direction that can resist attacks on measurement devices. Quantum teleportation (QT) framework protocols achieves cross-node authentication and unconditional security, making it suitable for quantum relay networks despite its high experimental complexity. The entanglement swapping framework protocol can resist conspiracy attacks and is suitable for multi-party joint scenarios, but it consumes a lot of resources and relies on trusted third party. Ping-pong protocol framework supports dynamic key updates and exhibits strong resistance to eavesdropping, making it suitable for temporary authentication on mobile terminals, although it typically only supports unilateral authentication and requires a bidirectional channel.Subsequently, this review details the latest QIA protocols of our research group, including a multi-party synchronous identity authentication protocol based on Greenberger-Horne-Zeilinger (GHZ) states, and a tripartite QSDC protocol with identity authentication capabilities utilizing polarization-spatial super-coding. The GHZ-based multi-party synchronous authentication protocol leverages the strong correlations inherent in GHZ states to achieve simultaneous authentication among multiple parties. Through a carefully designed two-round decoy-state detection mechanism, it effectively resists both external eavesdropping and internal attacks originating from authenticated users, thereby enhancing the efficiency and security of identity management in large-scale quantum networks. The core innovation of the polarization-spatial super-coding tripartite QSDC protocol lies in its deep integration of the authentication process with information transmission by utilizing the spatial degrees of freedom of single photons. This design accomplishes the identity verification of two senders and the transmission of secret information within a single protocol run, ensuring end-to-end security through a three-stage security check. This “authentication-as-communication” paradigm significantly improves the overall efficiency and practicality of the protocol. Its successful implementation also relies on advancements in quantum memory technology.Finally, the review outlines future research directions for quantum identity authentication and explores its potential applications in quantum communication. The QIA research needs to focus on reducing resource dependency, exploring more efficient protocol designs, further enhancing protocol integration and robustness, prioritizing the development of protocols adaptable to real-world environments, and actively investigating integration with novel scenarios. This comprehensive review aims to provide theoretical research foundations and technical support for the practical development of future quantum identity authentication.
      通信作者: 郑艳艳, yyz@yau.edu.cn ; 盛宇波, shengyb@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175106, 92365110)资助的课题.
      Corresponding author: ZHENG Yanyan, yyz@yau.edu.cn ; SHENG Yubo, shengyb@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175106, 92365110).
    [1]

    Goldenberg L, Vaidman L 1995 Phys. Rev. Lett. 75 1239Google Scholar

    [2]

    Scarani V, Renner R 2008 Phys. Rev. Lett. 100 200501Google Scholar

    [3]

    Liestyowati D 2020 J. Phys.: Conf. Ser. 1477 052062Google Scholar

    [4]

    Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science Santa Fe, USA, November 20–22, 1994 p124

    [5]

    赵千川 2004 量子计算和量子信息(一)—量子计算部分 (北京: 清华大学出版社)

    Zhao Q C 2004 Quantum Computation and Quantum Information (I) — Quantum Computation (Beijing: Tsinghua University Press

    [6]

    张永德 2010 高等量子力学 第2版 (北京: 北京大学出版社)

    Zhang Y D 2010 Advanced Quantum Mechanics (2nd ed.) (Beijing: Peking University Press

    [7]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10–12, 1984 p175

    [8]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [9]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [10]

    Bennett C H, Brassard G, Crépeau C, Jozsa R 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [11]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [12]

    Pandey R K, Pathak A, Venugopalan A 2021 Quantum Inf. Process. 20 322Google Scholar

    [13]

    Li J X, Wang Z M, Shi S S, Li Y N, Shang R M, Gu Y J 2022 Europhys. Lett. 140 58001Google Scholar

    [14]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [15]

    Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648Google Scholar

    [16]

    Wang T Y, Wei Z L, Gao F 2021 Quantum Inf. Process. 20 7Google Scholar

    [17]

    Ju X X, Zhong W, Sheng Y B, Zhou L 2022 Chin. Phys. B 31 100302Google Scholar

    [18]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [19]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [20]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [21]

    Eusebi A, Mancini S 2009 Quantum Inf. Comput. 9 950Google Scholar

    [22]

    Hu J Y, Li C L, Zhang C, Liu B, Guo G C 2016 Light Sci. Appl. 5 e16144Google Scholar

    [23]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [24]

    Zhu F, Zhang W, Sheng Y B, Guo G C 2017 Sci. Bull. 62 1519Google Scholar

    [25]

    Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F, Guo G C 2019 Quantum Eng. 1 e13Google Scholar

    [26]

    Xu F H, Curty M, Qi B, Qian L, Lo H K 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [27]

    Chen Y A, Zhang Q, Chen T Y, Pan J W 2021 Nature 589 214Google Scholar

    [28]

    Yin Z Q, Li F L, Chen Y A, Pan J W 2021 Fundam. Res. 1 93Google Scholar

    [29]

    Kwek L C, Cao L, Luo Y, Wang Y, Sun S H, Liu X, Lai J, Oh C H 2021 AAPPS Bull. 31 15Google Scholar

    [30]

    Wang X F, Sun X J, Liu Y X, Wang W, Kan B X, Dong P, Zhao L L 2021 Quantum Eng. 3 e73Google Scholar

    [31]

    Hajji H, El Baz M 2021 Quantum Inf. Process. 20 4Google Scholar

    [32]

    Zhang C Y, Li C L, Xu J S, Li C F, Guo G C 2021 Quantum Inf. Process. 20 146Google Scholar

    [33]

    Jin A R, Li Y, Zhang Y, Pan J W 2021 Phys. Rev. Appl. 16 034017Google Scholar

    [34]

    Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Guo G C, Han Z F 2022 Nat. Photonics 16 154Google Scholar

    [35]

    Liu B, Xia S, Xiao D, Huang W, Xu B J, Li Y 2022 Sci. China-Phys. Mech. Astron. 65 240312Google Scholar

    [36]

    Liang K X, Li Z Q, Liu J, Wang Q L 2022 Phys. Rev. Appl. 18 054077Google Scholar

    [37]

    Zeng P, Zhou H, Zhang W, Xu B J, Liu B, Gao Z 2022 Nat. Commun. 13 3903Google Scholar

    [38]

    Zhu H T, Zhang C M, Pei C X, Li H W 2022 PRX Quantum 3 020353Google Scholar

    [39]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [40]

    Qi R Y, Sun Z, Lin Z, Niu J L, Hao P L, Song L J, Gao F 2019 Light Sci. Appl. 8 22Google Scholar

    [41]

    Long G L, Zhang H R 2021 Sci. Bull. 66 1267Google Scholar

    [42]

    Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Wei K J L 2021 Sci. China-Phys. Mech. Astron. 64 120311Google Scholar

    [43]

    Cao Z W, Yao F W, Xiao X Q 2021 Phys. Rev. Appl. 16 024012Google Scholar

    [44]

    Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83Google Scholar

    [45]

    Liu X, Luo D, Lin G S, Chen Z H, Huang C F, Li S Z, Zhang C X, Zhang Z R, Wei K J 2022 Sci. China-Phys. Mech. Astron. 65 120311Google Scholar

    [46]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [47]

    Zhou L, Sheng Y B 2022 Sci. China-Phys. Mech. Astron. 65 250311Google Scholar

    [48]

    Ying J W, Zhou L, Zhong W, Sheng Y B 2022 Chin. Phys. B 31 120303Google Scholar

    [49]

    Niu J L, Liu X C 2022 Eurphys. Lett. 139 38001Google Scholar

    [50]

    Wu J W, Long G L, Hayashi M 2022 Phys. Rev. Appl. 17 064011Google Scholar

    [51]

    Das N, Paul G 2022 Europhys. Lett. 138 48001Google Scholar

    [52]

    Cao Z W, Yao F W, Xiao X Q 2023 Laser Phys. Lett. 20 045201Google Scholar

    [53]

    Zhou L, Sheng Y B, Long G L 2023 Phys. Rev. Appl. 19 014036Google Scholar

    [54]

    Dŭsek M, Haderka O, Hendrych M, Gisin N 1999 Phys. Rev. A 60 149Google Scholar

    [55]

    Zeng G H, Zhang W P 2000 Phys. Rev. A 61 022303Google Scholar

    [56]

    Ljunggren D, Bourennane M, Karlsson A 2000 Phys. Rev. A 62 022305Google Scholar

    [57]

    Shi B S, Jiang Y K, Guo G C 2001 Phys. Lett. A 281 83Google Scholar

    [58]

    Zhang H G, Ji Z X, Wang H Z, Wu W Q 2019 Chin. Commun. 10 1Google Scholar

    [59]

    Tsai C W, Hwang T, Kuo L J 2011 Commun. Theor. Phys. 56 1023Google Scholar

    [60]

    Li J X, Zhang Y S, Guo G C 2021 Europhys. Lett. 133 20004Google Scholar

    [61]

    Dutta A, Pathak A 2022 Quantum Inf. Process. 21 369Google Scholar

    [62]

    Crépeau C, Salvail L 1995 Quantum Oblivious Mutual Identification (Berlin: Springer) p133

    [63]

    Zeng G H, Wang X B 1998 arXiv: quant-ph/9812022

    [64]

    Zhu D X, Zhao Z L, Zhang H J, Zhou Z Q, Li Y B, Zhao J, Song L J, Zheng J 2025 J. King Saud Univ. Comput. Inf. Sci. 37 57Google Scholar

    [65]

    Zhao W, Shi R H, Shi J J, Huang P, Guo Y, Huang D 2021 Phys. Rev. A 103 012410Google Scholar

    [66]

    Li Q, Wu J J, Quan J Y, Shi J J, Zhang S C 2022 IEEE Trans. Inf. Forensics Secur. 17 3264Google Scholar

    [67]

    Zhang X L 2009 Chin. Sci. Bull. 54 2018Google Scholar

    [68]

    Hong C H, Heo J, Jang J G, Kwon D 2017 Quantum Inf. Process. 16 236Google Scholar

    [69]

    Zawadzki P 2019 Quantum Inf. Process. 18 7Google Scholar

    [70]

    González-Guillén C E, González Vasco M I, Johnson F, Pérez del Pozo Á L 2021 Entropy 23 389Google Scholar

    [71]

    Calsi D L, Kohl P 2024 Quantum Inf. Process. 23 357Google Scholar

    [72]

    Rao B D, Jayaraman R 2023 Quantum Inf. Process. 22 92Google Scholar

    [73]

    Lee H, Lim J, Yang H J 2006 Phys. Rev. A 73 042305Google Scholar

    [74]

    Zhang Z J, Liu J, Wang D, Shi S H 2007 Phys. Rev. A 75 026301Google Scholar

    [75]

    Chang Y, Xu C X, Zhang S B, Yan L 2014 Chin. Sci. Bull. 59 2541Google Scholar

    [76]

    Zhang S S, Chen Z K, Shi R H 2020 Int. J. Theor. Phys. 59 236Google Scholar

    [77]

    Dutta A, Pathak A 2023 Quantum Inf. Process. 22 13Google Scholar

    [78]

    Ma H Q, Huang P, Bao W S, Zeng G H 2016 Quantum Inf. Process. 15 2605Google Scholar

    [79]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen, C S, Andersen U L 2015 Nat. Photonics 9 397Google Scholar

    [80]

    Xu F H, Curty M, Qi B, Qian L, Lo H K 2015 Nat. Photonics 9 772Google Scholar

    [81]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 773Google Scholar

    [82]

    Chen Z P, Yao F W, Xiao X Q 2024 Laser Phys. Lett. 21 115201Google Scholar

    [83]

    Liu W J, Chen H W, Li Z Q, Liu Z H, Hu W B 2009 Chin. Phys. B 18 4105Google Scholar

    [84]

    Zhu H F, Wang L W, Zhang Y L 2020 Quantum Inf. Process. 19 381Google Scholar

    [85]

    Wang J, Zhang Q, Tang C J 2006 Chin. Phys. Lett. 23 2360Google Scholar

    [86]

    Yuan H, Liu Y M, Pan G Z 2014 Quantum Inf. Process. 13 2535Google Scholar

    [87]

    Curty M, Santos D J 2001 Phys. Rev. A 64 062309Google Scholar

    [88]

    Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306Google Scholar

    [89]

    Chang Y, Zhang S B, Yan L L, Han G H 2015 Chin. Phys. B 24 050307Google Scholar

    [90]

    Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L, Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362Google Scholar

    [91]

    Das N, Paul G 2022 Quantum Inf. Process. 21 260Google Scholar

    [92]

    Li G D, Liu J C, Wang Q L, Sun W Q 2024 IEEE Commun. Lett. 28 473Google Scholar

    [93]

    Zhou N R, Zeng G H, Zeng W J, Zhu F C 2005 Opt. Commun. 254 380Google Scholar

    [94]

    Xin X J, He F, Qiu S J, Li C Y, Li F G 2024 Chin. J. Phys. 92 664Google Scholar

    [95]

    Yang Y G, Wen Q Y 2009 Chin. Phys. B 18 3233Google Scholar

    [96]

    Zhang Z S, Zeng G H, Zhou N R, Xiong J 2006 Phys. Lett. A 356 199Google Scholar

    [97]

    Wang X F, Gu S P, Sheng Y B, Zhou L 2023 Europhys. Lett. 142 68002Google Scholar

    [98]

    Zhang Q, Du M M, Zhong W, Sheng Y B, Zhou L 2024 Ann. Phys. (Berlin) 536 2300407Google Scholar

    [99]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar

    [100]

    Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602Google Scholar

    [101]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I 2017 Science 357 1392Google Scholar

    [102]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar

    [103]

    Jin M, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2022 Sci. Bull. 67 676Google Scholar

  • 图 1  多方QIA协议原理图

    Fig. 1.  Schematic diagram of multi-party quantum identity authentication.

    图 2  三方QIA协议步骤图

    Fig. 2.  Schematic diagram of the three-partite QIA protocol.

    图 3  具有身份认证功能的三方量子安全通信协议示意图

    Fig. 3.  Schematic diagram of a three-party quantum secure communication scheme with identity authentication function.

    表 1  根据量子资源分类的QIA协议

    Table 1.  QIA scheme based on quantum resources classification.

    量子源类型 核心资源 优势 局限性 信道损耗/噪声容忍度
    单光子 极化/相位编
    码单光子
    低资源消耗、易于实现、
    与现有QKD技术兼容度高
    需高效单光子探测器, 抗噪声
    能力较弱, 需防范光子数
    分离(PNS)攻击
    中等. 对信道损耗敏感, 需使用
    诱骗态; 散粒噪声会影响误码率
    纠缠态 贝尔态、
    GHZ态、
    团簇态
    高安全性、抗窃听能力强、
    具备理论上的无条件安全性
    实验复杂度高, 依赖稳定
    纠缠源, 传输距离受纠缠
    分效率限制
    较低. 纠缠分发效率极易受信道损耗和退相干效应影响, 保真度下降快
    连续变量 双模压缩态、
    相干态
    城域网效率高, 兼容经典
    光通信设备, 探测效率高
    需高精度调制, 安全性依赖
    高斯假设, 易受到非高斯攻击
    较高. 可采用经典光通信的放大和
    纠错技术, 但对过量噪声非常敏感
    混合型 纠缠态+
    单光子/
    经典算法
    灵活性强, 平衡效率与
    安全性, 降低对单一量子
    源的依赖, 适用复杂场景
    安全性需双重验证, 协议
    设计复杂度高, 需协调量子
    与经典操作的同步性
    可调节. 取决于所采用的具体量子资源组合, 设计上可针对噪声进行优化
    下载: 导出CSV

    表 2  基于量子框架分类的QIA协议

    Table 2.  QIA schemes based on quantum framework classification.

    分类信道需求核心优势主要局限适用场景
    QKD框架低损耗高安全性, 密钥与认证同步依赖预共享密钥或可信第三方长期密钥分发的安全通信
    QSDC框架高稳定性高效信息传输与认证一体化对量子信道质量要求高实时安全通信(如军事指挥)
    隐形传态框架中继节点跨节点认证, 无条件安全性实验复杂度高, 需可信中继量子中继网络与城域互联
    纠缠交换框架多方同步多方协作抗合谋攻击量子资源消耗大, 依赖可信第三方多方联合认证(如区块链共识)
    乒乓协议框架双向信道动态密钥更新, 抗窃听能力强仅支持单向认证, 需双向信道移动终端临时认证
    下载: 导出CSV
    Baidu
  • [1]

    Goldenberg L, Vaidman L 1995 Phys. Rev. Lett. 75 1239Google Scholar

    [2]

    Scarani V, Renner R 2008 Phys. Rev. Lett. 100 200501Google Scholar

    [3]

    Liestyowati D 2020 J. Phys.: Conf. Ser. 1477 052062Google Scholar

    [4]

    Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science Santa Fe, USA, November 20–22, 1994 p124

    [5]

    赵千川 2004 量子计算和量子信息(一)—量子计算部分 (北京: 清华大学出版社)

    Zhao Q C 2004 Quantum Computation and Quantum Information (I) — Quantum Computation (Beijing: Tsinghua University Press

    [6]

    张永德 2010 高等量子力学 第2版 (北京: 北京大学出版社)

    Zhang Y D 2010 Advanced Quantum Mechanics (2nd ed.) (Beijing: Peking University Press

    [7]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10–12, 1984 p175

    [8]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [9]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [10]

    Bennett C H, Brassard G, Crépeau C, Jozsa R 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [11]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [12]

    Pandey R K, Pathak A, Venugopalan A 2021 Quantum Inf. Process. 20 322Google Scholar

    [13]

    Li J X, Wang Z M, Shi S S, Li Y N, Shang R M, Gu Y J 2022 Europhys. Lett. 140 58001Google Scholar

    [14]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [15]

    Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648Google Scholar

    [16]

    Wang T Y, Wei Z L, Gao F 2021 Quantum Inf. Process. 20 7Google Scholar

    [17]

    Ju X X, Zhong W, Sheng Y B, Zhou L 2022 Chin. Phys. B 31 100302Google Scholar

    [18]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [19]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [20]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [21]

    Eusebi A, Mancini S 2009 Quantum Inf. Comput. 9 950Google Scholar

    [22]

    Hu J Y, Li C L, Zhang C, Liu B, Guo G C 2016 Light Sci. Appl. 5 e16144Google Scholar

    [23]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [24]

    Zhu F, Zhang W, Sheng Y B, Guo G C 2017 Sci. Bull. 62 1519Google Scholar

    [25]

    Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F, Guo G C 2019 Quantum Eng. 1 e13Google Scholar

    [26]

    Xu F H, Curty M, Qi B, Qian L, Lo H K 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [27]

    Chen Y A, Zhang Q, Chen T Y, Pan J W 2021 Nature 589 214Google Scholar

    [28]

    Yin Z Q, Li F L, Chen Y A, Pan J W 2021 Fundam. Res. 1 93Google Scholar

    [29]

    Kwek L C, Cao L, Luo Y, Wang Y, Sun S H, Liu X, Lai J, Oh C H 2021 AAPPS Bull. 31 15Google Scholar

    [30]

    Wang X F, Sun X J, Liu Y X, Wang W, Kan B X, Dong P, Zhao L L 2021 Quantum Eng. 3 e73Google Scholar

    [31]

    Hajji H, El Baz M 2021 Quantum Inf. Process. 20 4Google Scholar

    [32]

    Zhang C Y, Li C L, Xu J S, Li C F, Guo G C 2021 Quantum Inf. Process. 20 146Google Scholar

    [33]

    Jin A R, Li Y, Zhang Y, Pan J W 2021 Phys. Rev. Appl. 16 034017Google Scholar

    [34]

    Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Guo G C, Han Z F 2022 Nat. Photonics 16 154Google Scholar

    [35]

    Liu B, Xia S, Xiao D, Huang W, Xu B J, Li Y 2022 Sci. China-Phys. Mech. Astron. 65 240312Google Scholar

    [36]

    Liang K X, Li Z Q, Liu J, Wang Q L 2022 Phys. Rev. Appl. 18 054077Google Scholar

    [37]

    Zeng P, Zhou H, Zhang W, Xu B J, Liu B, Gao Z 2022 Nat. Commun. 13 3903Google Scholar

    [38]

    Zhu H T, Zhang C M, Pei C X, Li H W 2022 PRX Quantum 3 020353Google Scholar

    [39]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [40]

    Qi R Y, Sun Z, Lin Z, Niu J L, Hao P L, Song L J, Gao F 2019 Light Sci. Appl. 8 22Google Scholar

    [41]

    Long G L, Zhang H R 2021 Sci. Bull. 66 1267Google Scholar

    [42]

    Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Wei K J L 2021 Sci. China-Phys. Mech. Astron. 64 120311Google Scholar

    [43]

    Cao Z W, Yao F W, Xiao X Q 2021 Phys. Rev. Appl. 16 024012Google Scholar

    [44]

    Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83Google Scholar

    [45]

    Liu X, Luo D, Lin G S, Chen Z H, Huang C F, Li S Z, Zhang C X, Zhang Z R, Wei K J 2022 Sci. China-Phys. Mech. Astron. 65 120311Google Scholar

    [46]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [47]

    Zhou L, Sheng Y B 2022 Sci. China-Phys. Mech. Astron. 65 250311Google Scholar

    [48]

    Ying J W, Zhou L, Zhong W, Sheng Y B 2022 Chin. Phys. B 31 120303Google Scholar

    [49]

    Niu J L, Liu X C 2022 Eurphys. Lett. 139 38001Google Scholar

    [50]

    Wu J W, Long G L, Hayashi M 2022 Phys. Rev. Appl. 17 064011Google Scholar

    [51]

    Das N, Paul G 2022 Europhys. Lett. 138 48001Google Scholar

    [52]

    Cao Z W, Yao F W, Xiao X Q 2023 Laser Phys. Lett. 20 045201Google Scholar

    [53]

    Zhou L, Sheng Y B, Long G L 2023 Phys. Rev. Appl. 19 014036Google Scholar

    [54]

    Dŭsek M, Haderka O, Hendrych M, Gisin N 1999 Phys. Rev. A 60 149Google Scholar

    [55]

    Zeng G H, Zhang W P 2000 Phys. Rev. A 61 022303Google Scholar

    [56]

    Ljunggren D, Bourennane M, Karlsson A 2000 Phys. Rev. A 62 022305Google Scholar

    [57]

    Shi B S, Jiang Y K, Guo G C 2001 Phys. Lett. A 281 83Google Scholar

    [58]

    Zhang H G, Ji Z X, Wang H Z, Wu W Q 2019 Chin. Commun. 10 1Google Scholar

    [59]

    Tsai C W, Hwang T, Kuo L J 2011 Commun. Theor. Phys. 56 1023Google Scholar

    [60]

    Li J X, Zhang Y S, Guo G C 2021 Europhys. Lett. 133 20004Google Scholar

    [61]

    Dutta A, Pathak A 2022 Quantum Inf. Process. 21 369Google Scholar

    [62]

    Crépeau C, Salvail L 1995 Quantum Oblivious Mutual Identification (Berlin: Springer) p133

    [63]

    Zeng G H, Wang X B 1998 arXiv: quant-ph/9812022

    [64]

    Zhu D X, Zhao Z L, Zhang H J, Zhou Z Q, Li Y B, Zhao J, Song L J, Zheng J 2025 J. King Saud Univ. Comput. Inf. Sci. 37 57Google Scholar

    [65]

    Zhao W, Shi R H, Shi J J, Huang P, Guo Y, Huang D 2021 Phys. Rev. A 103 012410Google Scholar

    [66]

    Li Q, Wu J J, Quan J Y, Shi J J, Zhang S C 2022 IEEE Trans. Inf. Forensics Secur. 17 3264Google Scholar

    [67]

    Zhang X L 2009 Chin. Sci. Bull. 54 2018Google Scholar

    [68]

    Hong C H, Heo J, Jang J G, Kwon D 2017 Quantum Inf. Process. 16 236Google Scholar

    [69]

    Zawadzki P 2019 Quantum Inf. Process. 18 7Google Scholar

    [70]

    González-Guillén C E, González Vasco M I, Johnson F, Pérez del Pozo Á L 2021 Entropy 23 389Google Scholar

    [71]

    Calsi D L, Kohl P 2024 Quantum Inf. Process. 23 357Google Scholar

    [72]

    Rao B D, Jayaraman R 2023 Quantum Inf. Process. 22 92Google Scholar

    [73]

    Lee H, Lim J, Yang H J 2006 Phys. Rev. A 73 042305Google Scholar

    [74]

    Zhang Z J, Liu J, Wang D, Shi S H 2007 Phys. Rev. A 75 026301Google Scholar

    [75]

    Chang Y, Xu C X, Zhang S B, Yan L 2014 Chin. Sci. Bull. 59 2541Google Scholar

    [76]

    Zhang S S, Chen Z K, Shi R H 2020 Int. J. Theor. Phys. 59 236Google Scholar

    [77]

    Dutta A, Pathak A 2023 Quantum Inf. Process. 22 13Google Scholar

    [78]

    Ma H Q, Huang P, Bao W S, Zeng G H 2016 Quantum Inf. Process. 15 2605Google Scholar

    [79]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen, C S, Andersen U L 2015 Nat. Photonics 9 397Google Scholar

    [80]

    Xu F H, Curty M, Qi B, Qian L, Lo H K 2015 Nat. Photonics 9 772Google Scholar

    [81]

    Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 773Google Scholar

    [82]

    Chen Z P, Yao F W, Xiao X Q 2024 Laser Phys. Lett. 21 115201Google Scholar

    [83]

    Liu W J, Chen H W, Li Z Q, Liu Z H, Hu W B 2009 Chin. Phys. B 18 4105Google Scholar

    [84]

    Zhu H F, Wang L W, Zhang Y L 2020 Quantum Inf. Process. 19 381Google Scholar

    [85]

    Wang J, Zhang Q, Tang C J 2006 Chin. Phys. Lett. 23 2360Google Scholar

    [86]

    Yuan H, Liu Y M, Pan G Z 2014 Quantum Inf. Process. 13 2535Google Scholar

    [87]

    Curty M, Santos D J 2001 Phys. Rev. A 64 062309Google Scholar

    [88]

    Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306Google Scholar

    [89]

    Chang Y, Zhang S B, Yan L L, Han G H 2015 Chin. Phys. B 24 050307Google Scholar

    [90]

    Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L, Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362Google Scholar

    [91]

    Das N, Paul G 2022 Quantum Inf. Process. 21 260Google Scholar

    [92]

    Li G D, Liu J C, Wang Q L, Sun W Q 2024 IEEE Commun. Lett. 28 473Google Scholar

    [93]

    Zhou N R, Zeng G H, Zeng W J, Zhu F C 2005 Opt. Commun. 254 380Google Scholar

    [94]

    Xin X J, He F, Qiu S J, Li C Y, Li F G 2024 Chin. J. Phys. 92 664Google Scholar

    [95]

    Yang Y G, Wen Q Y 2009 Chin. Phys. B 18 3233Google Scholar

    [96]

    Zhang Z S, Zeng G H, Zhou N R, Xiong J 2006 Phys. Lett. A 356 199Google Scholar

    [97]

    Wang X F, Gu S P, Sheng Y B, Zhou L 2023 Europhys. Lett. 142 68002Google Scholar

    [98]

    Zhang Q, Du M M, Zhong W, Sheng Y B, Zhou L 2024 Ann. Phys. (Berlin) 536 2300407Google Scholar

    [99]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar

    [100]

    Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602Google Scholar

    [101]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I 2017 Science 357 1392Google Scholar

    [102]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar

    [103]

    Jin M, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2022 Sci. Bull. 67 676Google Scholar

  • [1] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [2] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠.  , 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [3] 王灿灿. 量子纠缠与宇宙学弗里德曼方程.  , 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [4] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠.  , 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [5] 岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪. 一种新的单光源多波长双向量子密钥分发系统.  , 2012, 61(18): 184215. doi: 10.7498/aps.61.184215
    [6] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响.  , 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [7] 魏正军, 万伟, 王金东, 廖常俊, 刘颂豪. 一种基于确定性量子密钥分发误码判据的相位调制器半波电压的精确测定方法.  , 2011, 60(9): 094216. doi: 10.7498/aps.60.094216.1
    [8] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [9] 王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪. 一种高效量子密钥分发系统主动相位补偿方法.  , 2010, 59(1): 281-286. doi: 10.7498/aps.59.281
    [10] 王郁武, 詹佑邦. 零知识证明的量子身份认证协议.  , 2009, 58(11): 7668-7671. doi: 10.7498/aps.58.7668
    [11] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [12] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究.  , 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [13] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究.  , 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [14] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [15] 郭邦红, 路轶群, 王发强, 赵 峰, 胡 敏, 林一满, 廖常俊, 刘颂豪. 相位调制量子密钥分配系统中低频振动相移的实时跟踪补偿.  , 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [16] 郑力明, 王发强, 刘颂豪. 光纤色散与损耗对光量子密钥分发系统的影响.  , 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [17] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [18] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠.  , 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [19] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统.  , 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [20] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统.  , 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
计量
  • 文章访问数:  412
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-12
  • 修回日期:  2025-09-05
  • 上网日期:  2025-09-17

/

返回文章
返回
Baidu
map