- 
				量子通信具有感知窃听的功能, 这是其区别于经典通信而独有的优势, 能够为信息安全提供新的保障. 在实际应用中, 量子通信具有绝对安全性的前提是所有通信方均是合法通信方, 然而, 这在实际通信环境中难以保证, 为量子保密通信带来安全性隐患. 因此, 在通信之前对通信方进行身份认证具有重要意义. 量子身份认证利用量子力学基本原理在通信方之间实现单向或双向身份认证, 并能确保身份认证码的绝对安全, 在量子通信领域具有重要的研究价值. 本文系统地梳理了量子身份认证协议的研究历程, 根据所需的不同量子资源对基于单光子、纠缠态、连续变量、混合型变量的量子身份认证协议进行介绍, 又根据身份认证过程中使用的量子协议类型, 介绍了基于量子密钥分发、量子安全直接通信、量子隐形传态以及乒乓协议框架的量子身份认证协议, 并分析各类协议在效率、安全性及实用化方面的优缺点. 最后, 详细地介绍了最新的量子身份认证协议——基于GHZ态的多方同步身份认证协议以及具有身份认证功能的极化-空间超编码的三方量子安全直接通信协议, 并对量子身份认证的未来发展方向以及在量子通信领域的应用潜力进行展望. 本综述可为未来量子身份认证的实用化发展提供理论支持.
The absolute security of quantum communication protocols relies on a critical premise: all participating parties are legitimate users. Ensuring the legitimacy of participant identities is paramount in complex real-world communication environments. Quantum identity authentication (QIA), in which fundamental principles of quantum mechanics are used to achieve unilateral or mutual authentication between communicating parties, constitutes an indispensable core component for building a comprehensive quantum secure communication system. It holds significant research value in the field of quantum communication. This review employs a comparative classification method to systematically outline the research trajectory of QIA protocols. By categorizing protocols based on the required quantum resources and the types of quantum protocols employed, the advantages and disadvantages of various categories are analyzed in terms of efficiency, security, and practicality. Single-photon protocols require low resources, and they are easy to implement, and compatible with existing optical components, but require high-efficiency single-photon detectors and exhibit weak noise resistance. Entangled-state protocols offer high security and strong resistance to eavesdropping, particularly suitable for long-distance or multi-party authentication. However, they greatly depend on the preparation and maintenance of high-precision, stable multi-particle entanglement sources, resulting in high experimental complexity. Continuous-variable (CV) protocols achieve high transmission efficiency in short-distance metropolitan area networks and are compatible with classical optical communication equipment, making experiments relatively straightforward. Yet, they require high-precision modulation technology and are sensitive to channel loss. Hybrid protocols aim to balance resource efficiency and security while reducing reliance on a single quantum source, but their design is complex and may introduce new attack vectors. Quantum key distribution (QKD) framework protocols embed identity authentication in the key distribution process, making them suitable for scenarios requiring long-term secure key distribution, although they often depend on pre-shared keys or trusted third parties. Quantum secure direct communication (QSDC) framework protocols integrate authentication with secure direct information transmission, offering high efficiency for real-time communication, but requiring high channel quality. Measurement-device-independent QSDC (MDI-QSDC) represents a key development direction that can resist attacks on measurement devices. Quantum teleportation (QT) framework protocols achieves cross-node authentication and unconditional security, making it suitable for quantum relay networks despite its high experimental complexity. The entanglement swapping framework protocol can resist conspiracy attacks and is suitable for multi-party joint scenarios, but it consumes a lot of resources and relies on trusted third party. Ping-pong protocol framework supports dynamic key updates and exhibits strong resistance to eavesdropping, making it suitable for temporary authentication on mobile terminals, although it typically only supports unilateral authentication and requires a bidirectional channel. Subsequently, this review details the latest QIA protocols of our research group, including a multi-party synchronous identity authentication protocol based on Greenberger-Horne-Zeilinger (GHZ) states, and a tripartite QSDC protocol with identity authentication capabilities utilizing polarization-spatial super-coding. The GHZ-based multi-party synchronous authentication protocol leverages the strong correlations inherent in GHZ states to achieve simultaneous authentication among multiple parties. Through a carefully designed two-round decoy-state detection mechanism, it effectively resists both external eavesdropping and internal attacks originating from authenticated users, thereby enhancing the efficiency and security of identity management in large-scale quantum networks. The core innovation of the polarization-spatial super-coding tripartite QSDC protocol lies in its deep integration of the authentication process with information transmission by utilizing the spatial degrees of freedom of single photons. This design accomplishes the identity verification of two senders and the transmission of secret information within a single protocol run, ensuring end-to-end security through a three-stage security check. This “authentication-as-communication” paradigm significantly improves the overall efficiency and practicality of the protocol. Its successful implementation also relies on advancements in quantum memory technology. Finally, the review outlines future research directions for quantum identity authentication and explores its potential applications in quantum communication. The QIA research needs to focus on reducing resource dependency, exploring more efficient protocol designs, further enhancing protocol integration and robustness, prioritizing the development of protocols adaptable to real-world environments, and actively investigating integration with novel scenarios. This comprehensive review aims to provide theoretical research foundations and technical support for the practical development of future quantum identity authentication. [1] Goldenberg L, Vaidman L 1995 Phys. Rev. Lett. 75 1239
Google Scholar
						[2] Scarani V, Renner R 2008 Phys. Rev. Lett. 100 200501
Google Scholar
						[3] Liestyowati D 2020 J. Phys.: Conf. Ser. 1477 052062
Google Scholar
						[4] Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science Santa Fe, USA, November 20–22, 1994 p124
[5] 赵千川 2004 量子计算和量子信息(一)—量子计算部分 (北京: 清华大学出版社)
Zhao Q C 2004 Quantum Computation and Quantum Information (I) — Quantum Computation (Beijing: Tsinghua University Press
[6] 张永德 2010 高等量子力学 第2版 (北京: 北京大学出版社)
Zhang Y D 2010 Advanced Quantum Mechanics (2nd ed.) (Beijing: Peking University Press
[7] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10–12, 1984 p175
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661
Google Scholar
						[9] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557
Google Scholar
						[10] Bennett C H, Brassard G, Crépeau C, Jozsa R 1993 Phys. Rev. Lett. 70 1895
Google Scholar
						[11] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
Google Scholar
						[12] Pandey R K, Pathak A, Venugopalan A 2021 Quantum Inf. Process. 20 322
Google Scholar
						[13] Li J X, Wang Z M, Shi S S, Li Y N, Shang R M, Gu Y J 2022 Europhys. Lett. 140 58001
Google Scholar
						[14] Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829
Google Scholar
						[15] Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648
Google Scholar
						[16] Wang T Y, Wei Z L, Gao F 2021 Quantum Inf. Process. 20 7
Google Scholar
						[17] Ju X X, Zhong W, Sheng Y B, Zhou L 2022 Chin. Phys. B 31 100302
Google Scholar
						[18] Long G L, Liu X S 2002 Phys. Rev. A 65 032302
Google Scholar
						[19] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317
Google Scholar
						[20] Deng F G, Long G L 2004 Phys. Rev. A 69 052319
Google Scholar
						[21] Eusebi A, Mancini S 2009 Quantum Inf. Comput. 9 950
Google Scholar
						[22] Hu J Y, Li C L, Zhang C, Liu B, Guo G C 2016 Light Sci. Appl. 5 e16144
Google Scholar
						[23] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501
Google Scholar
						[24] Zhu F, Zhang W, Sheng Y B, Guo G C 2017 Sci. Bull. 62 1519
Google Scholar
						[25] Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F, Guo G C 2019 Quantum Eng. 1 e13
Google Scholar
						[26] Xu F H, Curty M, Qi B, Qian L, Lo H K 2020 Rev. Mod. Phys. 92 025002
Google Scholar
						[27] Chen Y A, Zhang Q, Chen T Y, Pan J W 2021 Nature 589 214
Google Scholar
						[28] Yin Z Q, Li F L, Chen Y A, Pan J W 2021 Fundam. Res. 1 93
Google Scholar
						[29] Kwek L C, Cao L, Luo Y, Wang Y, Sun S H, Liu X, Lai J, Oh C H 2021 AAPPS Bull. 31 15
Google Scholar
						[30] Wang X F, Sun X J, Liu Y X, Wang W, Kan B X, Dong P, Zhao L L 2021 Quantum Eng. 3 e73
Google Scholar
						[31] Hajji H, El Baz M 2021 Quantum Inf. Process. 20 4
Google Scholar
						[32] Zhang C Y, Li C L, Xu J S, Li C F, Guo G C 2021 Quantum Inf. Process. 20 146
Google Scholar
						[33] Jin A R, Li Y, Zhang Y, Pan J W 2021 Phys. Rev. Appl. 16 034017
Google Scholar
						[34] Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Guo G C, Han Z F 2022 Nat. Photonics 16 154
Google Scholar
						[35] Liu B, Xia S, Xiao D, Huang W, Xu B J, Li Y 2022 Sci. China-Phys. Mech. Astron. 65 240312
Google Scholar
						[36] Liang K X, Li Z Q, Liu J, Wang Q L 2022 Phys. Rev. Appl. 18 054077
Google Scholar
						[37] Zeng P, Zhou H, Zhang W, Xu B J, Liu B, Gao Z 2022 Nat. Commun. 13 3903
Google Scholar
						[38] Zhu H T, Zhang C M, Pei C X, Li H W 2022 PRX Quantum 3 020353
Google Scholar
						[39] Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12
Google Scholar
						[40] Qi R Y, Sun Z, Lin Z, Niu J L, Hao P L, Song L J, Gao F 2019 Light Sci. Appl. 8 22
Google Scholar
						[41] Long G L, Zhang H R 2021 Sci. Bull. 66 1267
Google Scholar
						[42] Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Wei K J L 2021 Sci. China-Phys. Mech. Astron. 64 120311
Google Scholar
						[43] Cao Z W, Yao F W, Xiao X Q 2021 Phys. Rev. Appl. 16 024012
Google Scholar
						[44] Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83
Google Scholar
						[45] Liu X, Luo D, Lin G S, Chen Z H, Huang C F, Li S Z, Zhang C X, Zhang Z R, Wei K J 2022 Sci. China-Phys. Mech. Astron. 65 120311
Google Scholar
						[46] Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367
Google Scholar
						[47] Zhou L, Sheng Y B 2022 Sci. China-Phys. Mech. Astron. 65 250311
Google Scholar
						[48] Ying J W, Zhou L, Zhong W, Sheng Y B 2022 Chin. Phys. B 31 120303
Google Scholar
						[49] Niu J L, Liu X C 2022 Eurphys. Lett. 139 38001
Google Scholar
						[50] Wu J W, Long G L, Hayashi M 2022 Phys. Rev. Appl. 17 064011
Google Scholar
						[51] Das N, Paul G 2022 Europhys. Lett. 138 48001
Google Scholar
						[52] Cao Z W, Yao F W, Xiao X Q 2023 Laser Phys. Lett. 20 045201
Google Scholar
						[53] Zhou L, Sheng Y B, Long G L 2023 Phys. Rev. Appl. 19 014036
Google Scholar
						[54] Dŭsek M, Haderka O, Hendrych M, Gisin N 1999 Phys. Rev. A 60 149
Google Scholar
						[55] Zeng G H, Zhang W P 2000 Phys. Rev. A 61 022303
Google Scholar
						[56] Ljunggren D, Bourennane M, Karlsson A 2000 Phys. Rev. A 62 022305
Google Scholar
						[57] Shi B S, Jiang Y K, Guo G C 2001 Phys. Lett. A 281 83
Google Scholar
						[58] Zhang H G, Ji Z X, Wang H Z, Wu W Q 2019 Chin. Commun. 10 1
Google Scholar
						[59] Tsai C W, Hwang T, Kuo L J 2011 Commun. Theor. Phys. 56 1023
Google Scholar
						[60] Li J X, Zhang Y S, Guo G C 2021 Europhys. Lett. 133 20004
Google Scholar
						[61] Dutta A, Pathak A 2022 Quantum Inf. Process. 21 369
Google Scholar
						[62] Crépeau C, Salvail L 1995 Quantum Oblivious Mutual Identification (Berlin: Springer) p133
[63] Zeng G H, Wang X B 1998 arXiv: quant-ph/9812022
[64] Zhu D X, Zhao Z L, Zhang H J, Zhou Z Q, Li Y B, Zhao J, Song L J, Zheng J 2025 J. King Saud Univ. Comput. Inf. Sci. 37 57
Google Scholar
						[65] Zhao W, Shi R H, Shi J J, Huang P, Guo Y, Huang D 2021 Phys. Rev. A 103 012410
Google Scholar
						[66] Li Q, Wu J J, Quan J Y, Shi J J, Zhang S C 2022 IEEE Trans. Inf. Forensics Secur. 17 3264
Google Scholar
						[67] Zhang X L 2009 Chin. Sci. Bull. 54 2018
Google Scholar
						[68] Hong C H, Heo J, Jang J G, Kwon D 2017 Quantum Inf. Process. 16 236
Google Scholar
						[69] Zawadzki P 2019 Quantum Inf. Process. 18 7
Google Scholar
						[70] González-Guillén C E, González Vasco M I, Johnson F, Pérez del Pozo Á L 2021 Entropy 23 389
Google Scholar
						[71] Calsi D L, Kohl P 2024 Quantum Inf. Process. 23 357
Google Scholar
						[72] Rao B D, Jayaraman R 2023 Quantum Inf. Process. 22 92
Google Scholar
						[73] Lee H, Lim J, Yang H J 2006 Phys. Rev. A 73 042305
Google Scholar
						[74] Zhang Z J, Liu J, Wang D, Shi S H 2007 Phys. Rev. A 75 026301
Google Scholar
						[75] Chang Y, Xu C X, Zhang S B, Yan L 2014 Chin. Sci. Bull. 59 2541
Google Scholar
						[76] Zhang S S, Chen Z K, Shi R H 2020 Int. J. Theor. Phys. 59 236
Google Scholar
						[77] Dutta A, Pathak A 2023 Quantum Inf. Process. 22 13
Google Scholar
						[78] Ma H Q, Huang P, Bao W S, Zeng G H 2016 Quantum Inf. Process. 15 2605
Google Scholar
						[79] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen, C S, Andersen U L 2015 Nat. Photonics 9 397
Google Scholar
						[80] Xu F H, Curty M, Qi B, Qian L, Lo H K 2015 Nat. Photonics 9 772
Google Scholar
						[81] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 773
Google Scholar
						[82] Chen Z P, Yao F W, Xiao X Q 2024 Laser Phys. Lett. 21 115201
Google Scholar
						[83] Liu W J, Chen H W, Li Z Q, Liu Z H, Hu W B 2009 Chin. Phys. B 18 4105
Google Scholar
						[84] Zhu H F, Wang L W, Zhang Y L 2020 Quantum Inf. Process. 19 381
Google Scholar
						[85] Wang J, Zhang Q, Tang C J 2006 Chin. Phys. Lett. 23 2360
Google Scholar
						[86] Yuan H, Liu Y M, Pan G Z 2014 Quantum Inf. Process. 13 2535
Google Scholar
						[87] Curty M, Santos D J 2001 Phys. Rev. A 64 062309
Google Scholar
						[88] Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306
Google Scholar
						[89] Chang Y, Zhang S B, Yan L L, Han G H 2015 Chin. Phys. B 24 050307
Google Scholar
						[90] Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L, Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362
Google Scholar
						[91] Das N, Paul G 2022 Quantum Inf. Process. 21 260
Google Scholar
						[92] Li G D, Liu J C, Wang Q L, Sun W Q 2024 IEEE Commun. Lett. 28 473
Google Scholar
						[93] Zhou N R, Zeng G H, Zeng W J, Zhu F C 2005 Opt. Commun. 254 380
Google Scholar
						[94] Xin X J, He F, Qiu S J, Li C Y, Li F G 2024 Chin. J. Phys. 92 664
Google Scholar
						[95] Yang Y G, Wen Q Y 2009 Chin. Phys. B 18 3233
Google Scholar
						[96] Zhang Z S, Zeng G H, Zhou N R, Xiong J 2006 Phys. Lett. A 356 199
Google Scholar
						[97] Wang X F, Gu S P, Sheng Y B, Zhou L 2023 Europhys. Lett. 142 68002
Google Scholar
						[98] Zhang Q, Du M M, Zhong W, Sheng Y B, Zhou L 2024 Ann. Phys. (Berlin) 536 2300407
Google Scholar
						[99] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234
Google Scholar
						[100] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602
Google Scholar
						[101] Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I 2017 Science 357 1392
Google Scholar
						[102] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41
Google Scholar
						[103] Jin M, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2022 Sci. Bull. 67 676
Google Scholar
						 - 
				
    
    
    
    
表 1 根据量子资源分类的QIA协议
Table 1. QIA scheme based on quantum resources classification.
量子源类型 核心资源 优势 局限性 信道损耗/噪声容忍度 单光子 极化/相位编 
码单光子低资源消耗、易于实现、 
与现有QKD技术兼容度高需高效单光子探测器, 抗噪声 
能力较弱, 需防范光子数
分离(PNS)攻击中等. 对信道损耗敏感, 需使用 
诱骗态; 散粒噪声会影响误码率纠缠态 贝尔态、 
GHZ态、
团簇态高安全性、抗窃听能力强、 
具备理论上的无条件安全性实验复杂度高, 依赖稳定 
纠缠源, 传输距离受纠缠
分效率限制较低. 纠缠分发效率极易受信道损耗和退相干效应影响, 保真度下降快 连续变量 双模压缩态、 
相干态城域网效率高, 兼容经典 
光通信设备, 探测效率高需高精度调制, 安全性依赖 
高斯假设, 易受到非高斯攻击较高. 可采用经典光通信的放大和 
纠错技术, 但对过量噪声非常敏感混合型 纠缠态+ 
单光子/
经典算法灵活性强, 平衡效率与 
安全性, 降低对单一量子
源的依赖, 适用复杂场景安全性需双重验证, 协议 
设计复杂度高, 需协调量子
与经典操作的同步性可调节. 取决于所采用的具体量子资源组合, 设计上可针对噪声进行优化 表 2 基于量子框架分类的QIA协议
Table 2. QIA schemes based on quantum framework classification.
分类 信道需求 核心优势 主要局限 适用场景 QKD框架 低损耗 高安全性, 密钥与认证同步 依赖预共享密钥或可信第三方 长期密钥分发的安全通信 QSDC框架 高稳定性 高效信息传输与认证一体化 对量子信道质量要求高 实时安全通信(如军事指挥) 隐形传态框架 中继节点 跨节点认证, 无条件安全性 实验复杂度高, 需可信中继 量子中继网络与城域互联 纠缠交换框架 多方同步 多方协作抗合谋攻击 量子资源消耗大, 依赖可信第三方 多方联合认证(如区块链共识) 乒乓协议框架 双向信道 动态密钥更新, 抗窃听能力强 仅支持单向认证, 需双向信道 移动终端临时认证  - 
				
[1] Goldenberg L, Vaidman L 1995 Phys. Rev. Lett. 75 1239
Google Scholar
						[2] Scarani V, Renner R 2008 Phys. Rev. Lett. 100 200501
Google Scholar
						[3] Liestyowati D 2020 J. Phys.: Conf. Ser. 1477 052062
Google Scholar
						[4] Shor P W 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science Santa Fe, USA, November 20–22, 1994 p124
[5] 赵千川 2004 量子计算和量子信息(一)—量子计算部分 (北京: 清华大学出版社)
Zhao Q C 2004 Quantum Computation and Quantum Information (I) — Quantum Computation (Beijing: Tsinghua University Press
[6] 张永德 2010 高等量子力学 第2版 (北京: 北京大学出版社)
Zhang Y D 2010 Advanced Quantum Mechanics (2nd ed.) (Beijing: Peking University Press
[7] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, December 10–12, 1984 p175
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661
Google Scholar
						[9] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557
Google Scholar
						[10] Bennett C H, Brassard G, Crépeau C, Jozsa R 1993 Phys. Rev. Lett. 70 1895
Google Scholar
						[11] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
Google Scholar
						[12] Pandey R K, Pathak A, Venugopalan A 2021 Quantum Inf. Process. 20 322
Google Scholar
						[13] Li J X, Wang Z M, Shi S S, Li Y N, Shang R M, Gu Y J 2022 Europhys. Lett. 140 58001
Google Scholar
						[14] Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829
Google Scholar
						[15] Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648
Google Scholar
						[16] Wang T Y, Wei Z L, Gao F 2021 Quantum Inf. Process. 20 7
Google Scholar
						[17] Ju X X, Zhong W, Sheng Y B, Zhou L 2022 Chin. Phys. B 31 100302
Google Scholar
						[18] Long G L, Liu X S 2002 Phys. Rev. A 65 032302
Google Scholar
						[19] Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317
Google Scholar
						[20] Deng F G, Long G L 2004 Phys. Rev. A 69 052319
Google Scholar
						[21] Eusebi A, Mancini S 2009 Quantum Inf. Comput. 9 950
Google Scholar
						[22] Hu J Y, Li C L, Zhang C, Liu B, Guo G C 2016 Light Sci. Appl. 5 e16144
Google Scholar
						[23] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501
Google Scholar
						[24] Zhu F, Zhang W, Sheng Y B, Guo G C 2017 Sci. Bull. 62 1519
Google Scholar
						[25] Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F, Guo G C 2019 Quantum Eng. 1 e13
Google Scholar
						[26] Xu F H, Curty M, Qi B, Qian L, Lo H K 2020 Rev. Mod. Phys. 92 025002
Google Scholar
						[27] Chen Y A, Zhang Q, Chen T Y, Pan J W 2021 Nature 589 214
Google Scholar
						[28] Yin Z Q, Li F L, Chen Y A, Pan J W 2021 Fundam. Res. 1 93
Google Scholar
						[29] Kwek L C, Cao L, Luo Y, Wang Y, Sun S H, Liu X, Lai J, Oh C H 2021 AAPPS Bull. 31 15
Google Scholar
						[30] Wang X F, Sun X J, Liu Y X, Wang W, Kan B X, Dong P, Zhao L L 2021 Quantum Eng. 3 e73
Google Scholar
						[31] Hajji H, El Baz M 2021 Quantum Inf. Process. 20 4
Google Scholar
						[32] Zhang C Y, Li C L, Xu J S, Li C F, Guo G C 2021 Quantum Inf. Process. 20 146
Google Scholar
						[33] Jin A R, Li Y, Zhang Y, Pan J W 2021 Phys. Rev. Appl. 16 034017
Google Scholar
						[34] Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Guo G C, Han Z F 2022 Nat. Photonics 16 154
Google Scholar
						[35] Liu B, Xia S, Xiao D, Huang W, Xu B J, Li Y 2022 Sci. China-Phys. Mech. Astron. 65 240312
Google Scholar
						[36] Liang K X, Li Z Q, Liu J, Wang Q L 2022 Phys. Rev. Appl. 18 054077
Google Scholar
						[37] Zeng P, Zhou H, Zhang W, Xu B J, Liu B, Gao Z 2022 Nat. Commun. 13 3903
Google Scholar
						[38] Zhu H T, Zhang C M, Pei C X, Li H W 2022 PRX Quantum 3 020353
Google Scholar
						[39] Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12
Google Scholar
						[40] Qi R Y, Sun Z, Lin Z, Niu J L, Hao P L, Song L J, Gao F 2019 Light Sci. Appl. 8 22
Google Scholar
						[41] Long G L, Zhang H R 2021 Sci. Bull. 66 1267
Google Scholar
						[42] Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Wei K J L 2021 Sci. China-Phys. Mech. Astron. 64 120311
Google Scholar
						[43] Cao Z W, Yao F W, Xiao X Q 2021 Phys. Rev. Appl. 16 024012
Google Scholar
						[44] Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83
Google Scholar
						[45] Liu X, Luo D, Lin G S, Chen Z H, Huang C F, Li S Z, Zhang C X, Zhang Z R, Wei K J 2022 Sci. China-Phys. Mech. Astron. 65 120311
Google Scholar
						[46] Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367
Google Scholar
						[47] Zhou L, Sheng Y B 2022 Sci. China-Phys. Mech. Astron. 65 250311
Google Scholar
						[48] Ying J W, Zhou L, Zhong W, Sheng Y B 2022 Chin. Phys. B 31 120303
Google Scholar
						[49] Niu J L, Liu X C 2022 Eurphys. Lett. 139 38001
Google Scholar
						[50] Wu J W, Long G L, Hayashi M 2022 Phys. Rev. Appl. 17 064011
Google Scholar
						[51] Das N, Paul G 2022 Europhys. Lett. 138 48001
Google Scholar
						[52] Cao Z W, Yao F W, Xiao X Q 2023 Laser Phys. Lett. 20 045201
Google Scholar
						[53] Zhou L, Sheng Y B, Long G L 2023 Phys. Rev. Appl. 19 014036
Google Scholar
						[54] Dŭsek M, Haderka O, Hendrych M, Gisin N 1999 Phys. Rev. A 60 149
Google Scholar
						[55] Zeng G H, Zhang W P 2000 Phys. Rev. A 61 022303
Google Scholar
						[56] Ljunggren D, Bourennane M, Karlsson A 2000 Phys. Rev. A 62 022305
Google Scholar
						[57] Shi B S, Jiang Y K, Guo G C 2001 Phys. Lett. A 281 83
Google Scholar
						[58] Zhang H G, Ji Z X, Wang H Z, Wu W Q 2019 Chin. Commun. 10 1
Google Scholar
						[59] Tsai C W, Hwang T, Kuo L J 2011 Commun. Theor. Phys. 56 1023
Google Scholar
						[60] Li J X, Zhang Y S, Guo G C 2021 Europhys. Lett. 133 20004
Google Scholar
						[61] Dutta A, Pathak A 2022 Quantum Inf. Process. 21 369
Google Scholar
						[62] Crépeau C, Salvail L 1995 Quantum Oblivious Mutual Identification (Berlin: Springer) p133
[63] Zeng G H, Wang X B 1998 arXiv: quant-ph/9812022
[64] Zhu D X, Zhao Z L, Zhang H J, Zhou Z Q, Li Y B, Zhao J, Song L J, Zheng J 2025 J. King Saud Univ. Comput. Inf. Sci. 37 57
Google Scholar
						[65] Zhao W, Shi R H, Shi J J, Huang P, Guo Y, Huang D 2021 Phys. Rev. A 103 012410
Google Scholar
						[66] Li Q, Wu J J, Quan J Y, Shi J J, Zhang S C 2022 IEEE Trans. Inf. Forensics Secur. 17 3264
Google Scholar
						[67] Zhang X L 2009 Chin. Sci. Bull. 54 2018
Google Scholar
						[68] Hong C H, Heo J, Jang J G, Kwon D 2017 Quantum Inf. Process. 16 236
Google Scholar
						[69] Zawadzki P 2019 Quantum Inf. Process. 18 7
Google Scholar
						[70] González-Guillén C E, González Vasco M I, Johnson F, Pérez del Pozo Á L 2021 Entropy 23 389
Google Scholar
						[71] Calsi D L, Kohl P 2024 Quantum Inf. Process. 23 357
Google Scholar
						[72] Rao B D, Jayaraman R 2023 Quantum Inf. Process. 22 92
Google Scholar
						[73] Lee H, Lim J, Yang H J 2006 Phys. Rev. A 73 042305
Google Scholar
						[74] Zhang Z J, Liu J, Wang D, Shi S H 2007 Phys. Rev. A 75 026301
Google Scholar
						[75] Chang Y, Xu C X, Zhang S B, Yan L 2014 Chin. Sci. Bull. 59 2541
Google Scholar
						[76] Zhang S S, Chen Z K, Shi R H 2020 Int. J. Theor. Phys. 59 236
Google Scholar
						[77] Dutta A, Pathak A 2023 Quantum Inf. Process. 22 13
Google Scholar
						[78] Ma H Q, Huang P, Bao W S, Zeng G H 2016 Quantum Inf. Process. 15 2605
Google Scholar
						[79] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen, C S, Andersen U L 2015 Nat. Photonics 9 397
Google Scholar
						[80] Xu F H, Curty M, Qi B, Qian L, Lo H K 2015 Nat. Photonics 9 772
Google Scholar
						[81] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S, Andersen U L 2015 Nat. Photonics 9 773
Google Scholar
						[82] Chen Z P, Yao F W, Xiao X Q 2024 Laser Phys. Lett. 21 115201
Google Scholar
						[83] Liu W J, Chen H W, Li Z Q, Liu Z H, Hu W B 2009 Chin. Phys. B 18 4105
Google Scholar
						[84] Zhu H F, Wang L W, Zhang Y L 2020 Quantum Inf. Process. 19 381
Google Scholar
						[85] Wang J, Zhang Q, Tang C J 2006 Chin. Phys. Lett. 23 2360
Google Scholar
						[86] Yuan H, Liu Y M, Pan G Z 2014 Quantum Inf. Process. 13 2535
Google Scholar
						[87] Curty M, Santos D J 2001 Phys. Rev. A 64 062309
Google Scholar
						[88] Liu D, Pei C X, Quan D X, Zhao N 2010 Chin. Phys. Lett. 27 050306
Google Scholar
						[89] Chang Y, Zhang S B, Yan L L, Han G H 2015 Chin. Phys. B 24 050307
Google Scholar
						[90] Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L, Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362
Google Scholar
						[91] Das N, Paul G 2022 Quantum Inf. Process. 21 260
Google Scholar
						[92] Li G D, Liu J C, Wang Q L, Sun W Q 2024 IEEE Commun. Lett. 28 473
Google Scholar
						[93] Zhou N R, Zeng G H, Zeng W J, Zhu F C 2005 Opt. Commun. 254 380
Google Scholar
						[94] Xin X J, He F, Qiu S J, Li C Y, Li F G 2024 Chin. J. Phys. 92 664
Google Scholar
						[95] Yang Y G, Wen Q Y 2009 Chin. Phys. B 18 3233
Google Scholar
						[96] Zhang Z S, Zeng G H, Zhou N R, Xiong J 2006 Phys. Lett. A 356 199
Google Scholar
						[97] Wang X F, Gu S P, Sheng Y B, Zhou L 2023 Europhys. Lett. 142 68002
Google Scholar
						[98] Zhang Q, Du M M, Zhong W, Sheng Y B, Zhou L 2024 Ann. Phys. (Berlin) 536 2300407
Google Scholar
						[99] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234
Google Scholar
						[100] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F, Lukin M D 2017 Phys. Rev. Lett. 119 223602
Google Scholar
						[101] Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I 2017 Science 357 1392
Google Scholar
						[102] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41
Google Scholar
						[103] Jin M, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2022 Sci. Bull. 67 676
Google Scholar
						 
计量
- 文章访问数: 411
 - PDF下载量: 11
 - 被引次数: 0
 


					
		        
	        
 
										





							
下载: