搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Fe-Nd-Y-B合金的热物理性质与静电悬浮快速凝固研究

徐方达 郑亚鹏 刘树红 翟薇 魏炳波

引用本文:
Citation:

液态Fe-Nd-Y-B合金的热物理性质与静电悬浮快速凝固研究

徐方达, 郑亚鹏, 刘树红, 翟薇, 魏炳波

Thermophysical properties and rapid solidification mechanism of highly undercooled liquid Fe-Nd-Y-B alloy under electrostatic levitation condition

XU Fangda, ZHENG Yapeng, LIU Shuhong, ZHAI Wei, WEI Bingbo
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用静电悬浮技术研究了四元Fe75.6Nd10Y9B5.4合金的亚稳和稳定液态热物理性质及快速凝固规律, 其最大过冷度达到221 K (0.14TL). 精确测定了液态合金密度、热膨胀系数和比热与辐射率之比随温度的变化规律. 分子动力学模拟表明, Nd和Y两种稀土元素扩散系数均随温度下降以指数形式减小, 但相同温度下前者扩散速率高于后者. 当过冷度为80—158 K时, 初生(Nd, Y)2Fe17相枝晶生长速度从3.8 mm/s升高至5.7 mm/s, 且晶粒尺寸显著细化. 同时, 包晶转变也被促进, τ1-(Nd, Y)2Fe14B相体积分数增长至75%. 一旦过冷度达到180 K, 初生(Nd, Y)2Fe17相消失, τ1相直接从合金熔体中形核, 且生长速度随过冷度由2.6 mm/s增大至11.0 mm/s. 形成焓计算结果表明, Y元素固溶可以提升初生(Nd, Y)2Fe17和包晶τ1相的热力学稳定性, 所以两相内Y元素含量均显著高于Nd元素. 大过冷条件下, 扩散能力强的Nd元素在τ1相内的含量略微升高, 而Y元素含量下降.
    The metastable and stable liquid state thermophysical properties and rapid solidification mechanism of quaternary Fe75.6Nd10Y9B5.4 alloy with a maximum undercooling temperature of 221 K (0.14TL) are investigated using electrostatic levitation technique. The measured results indicate that the density, thermal expansion coefficient and the ratio of specific heat to emissivity of the liquid alloy comply with linear functional relationship with temperature in the range of 1402–1618 K. Molecular dynamics (MD) simulations show that the diffusion coefficients of Nd and Y elements decrease exponentially with temperature decreasing, with the former exhibiting a larger diffusion coefficient at the same temperature. When the liquid under cooling rises from 80 to 158 K, the growth velocity of primary (Nd,Y)2Fe17 phase dendrites increases from 3.8 to 5.7 mm·s−1, while exhibiting significant grain refinement effect. Meanwhile, the increased undercooling also promotes peritectic transformation, leading the volume fraction of peritectic τ1-(Nd,Y)2Fe14B phase to reach up to 75%. Once the undercooling reaches 180 K, the former peritectic τ1 phase, rather than the primary (Nd,Y)2Fe17 phase, becomes the leading phase, which nucleates and grows directly from the undercooled liquid alloy, and its growth velocity increases with undercooling from 2.6 to 11.0 mm/s. The calculation results of formation enthalpy show that the solid solution of the Y element can enhance the thermodynamic stability of the (Nd,Y)2Fe17 phase and the τ1 phase, thereby explaining the reason why the content of Y element in both phases is significantly higher than that of Nd element. Nevertheless, the content of Nd element in the τ1 phase slightly increases because its diffusion ability is stronger than that of Y if undercooling temperature is higher than 180 K.
  • 图 1  四元Fe75.6Nd10Y9B5.4合金的亚稳和稳定液态热物理性质随温度变化规律 (a) 合金成分在Fe-Nd-Y-B相图773 K等温截面中的位置; (b) 密度与热膨胀系数; (c) 比热与辐射率之比; (d) Nd与Y元素扩散系数

    Fig. 1.  Metastable and stable liquid state thermophysical properties of quaternary Fe75.6Nd10Y9B5.4 alloy versus temperature: (a) Alloy location in the 773 K isothermal section of Fe-Nd-Y-B phase diagram; (b) density and thermal expansion coefficient; (c) the ratio of specific heat to emissivity; (d) diffusivities of Nd and Y elements.

    图 2  四元Fe75.6Nd10Y9B5.4合金的近平衡凝固路径 (a) DSC曲线; (b) XRD图谱; (c) 凝固组织; (d) (Nd, Y)2Fe17与τ1相形核率

    Fig. 2.  Near-equilibrium solidification path of quaternary Fe75.6Nd10Y9B5.4 alloy: (a) DSC curve; (b) XRD patterns; (c) solidification microstructure; (d) the calculated nucleation rates of (Nd, Y)2Fe17 and τ1 phases.

    图 3  小过冷条件下静电悬浮快速凝固过程与组织特征 (a) ∆T = 80 K冷却曲线; (b) ∆T = 80 K组织形态; (c) ∆T = 158 K冷却曲线; (d) ∆T = 158 K凝固组织

    Fig. 3.  Rapid solidification process and microstructure characteristics under electrostatic levitation condition at small undercoolings: (a) Cooling curve at ΔT = 80 K; (b) microstructure morphology at ΔT = 80 K; (c) cooling curve at ΔT = 158 K; (d) solidification microstructure at ΔT = 158 K.

    图 4  四元Fe75.6Nd10Y9B5.4合金小过冷凝固组织特征随过冷度变化规律 (a) 各相体积分数; (b) 初生(Nd, Y)2Fe17相生长速度

    Fig. 4.  Solidification microstructure characteristics of quaternary Fe75.6Nd10Y9B5.4 alloy versus undercooling smaller than 180 K: (a) Volume fractions of each phase; (b) growth velocity of primary (Nd, Y)2Fe17 phase.

    图 5  四元Fe75.6Nd10Y9B5.4合金深过冷快速凝固组织演变规律 (a) ∆T = 180 K冷却曲线; (b) ∆T = 180 K组织形貌; (c) ∆T = 221 K冷却曲线; (d) ∆T = 221 K凝固组织

    Fig. 5.  Rapid solidification microstructure morphology of quaternary Fe75.6Nd10Y9B5.4 alloy at high undercooling regime: (a) Cooling curve at ΔT = 180 K; (b) microstructure morphology at ΔT = 180 K; (c) cooling curve at ΔT = 221 K; (d) solidification microstructure at ΔT = 221 K.

    图 6  深过冷条件下初生τ1相生长特征 (a) 晶粒尺寸和体积分数; (b) 生长速度

    Fig. 6.  Growth characteristics of primary τ1 phase under high undercooling conditions: (a) Grain size and volume fraction; (b) growth velocity.

    图 7  不同过冷度条件下凝固组织中稀土Nd和Y元素分布 (a) ∆T = 80 K; (b) ∆T = 221 K

    Fig. 7.  Distribution features of rare earth Nd and Y elements in solidification microstructures at different undercoolings: (a) ΔT = 80 K; (b) ΔT = 221 K.

    图 8  快速凝固组织中(Nd, Y)2Fe17与τ1相内Nd和Y元素含量随过冷度变化规律 (a) (Nd, Y)2Fe17相; (b) τ1相; (c) 四相形成焓

    Fig. 8.  The content evolution of Nd and Y elements in (Nd, Y)2Fe17 and τ1 phases of rapid solidification microstructures: (a) (Nd, Y)2Fe17 phase; (b) τ1 phase; (c) formation enthalpy of four phases.

    表 1  (Nd, Y)2Fe17与τ1相形核率计算的物理参数

    Table 1.  Physical parameters for calculating nucleation rates of (Nd, Y)2Fe17 and τ1 phases.

    物理参数 (Nd, Y)2Fe17 τ1 Refs.
    固液界面能/(J·m–2) 0.272 0.355 [30,31]
    液相线温度/K 1456 1385 This work
    熔化焓/(J·mol–1) 1.71×104 1.96×104 [31]
    扩散激活能/(J·mol–1) 5.9×104 2.5×104 [32]
    下载: 导出CSV

    表 2  各相晶格常数计算结果与实验数据对比

    Table 2.  Comparison of the calculated lattice constants of each phase with experimental data.

    Structure Lattice (Exp.) Refs. Lattice (Calculations in this work)
    A b c a ea/‰ b eb/‰ c ec/‰
    Nd2Fe14B 8.800 8.800 12.200 [33] 8.819 2.16 8.818 2.05 12.253 4.34
    Nd2Fe17 8.567 8.567 12.443 [34] 8.641 8.64 8.641 8.64 12.560 9.40
    Y2Fe14B 8.760 8.760 12.000 [35] 8.775 1.71 8.775 1.71 12.018 1.50
    Y2Fe17 8.520 8.520 12.380 [36] 8.584 7.50 8.584 7.50 12.378 0.16
    注: eX (X = a, b, c)是计算结果相较于实验测定结果的计算误差.
    下载: 导出CSV
    Baidu
  • [1]

    Guo S, Liao S C, Fan X D, Ding G F, Zheng B, Chen R J, Yan A R 2022 Materials 15 5964Google Scholar

    [2]

    万梓煊, 胡亮, 金英捷, 魏炳波 2025 74 038102

    Wan Z X, Hu L, Jin Y J, Wei B B 2025 Acta Phys. Sin. 74 038101

    [3]

    Paradis P, Ishikawa T, Koike N, Watanabe Y 2008 J. Jpn. Soc. Microgravity Appl. 25 407

    [4]

    Paradis P, Ishikawa T, Koike N 2009 Microgravity Sci. Tec. 21 113Google Scholar

    [5]

    Wille G, Millot F 2002 Int. J. Thermophys. 23 1197Google Scholar

    [6]

    Zheng Y P, Kang W G, Hu L, Zhai W, Wei B B 2023 J. Alloy. Compd. 968 172141Google Scholar

    [7]

    李岫梅, 刘涛, 郭朝晖, 朱明刚, 李卫 2008 57 3823Google Scholar

    Li X M, Liu T, Guo Z H, Zhu M G, Li W 2008 Acta Phys. Sin. 57 3823Google Scholar

    [8]

    Zhang C H, Luo Y, Yu D B, Quan N T, Wu G Y, Dou Y K, Hu Z, Wang Z L 2020 Rare Metals 39 55Google Scholar

    [9]

    Fan X, Ding G 2018 Acta Mater. 154 343Google Scholar

    [10]

    Hu L, Wang H P, Li L H, Wei B B 2013 Sci. China Technol. Sci. 56 53Google Scholar

    [11]

    金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波 2024 73 086401Google Scholar

    Jin Y J, Geng D L, Lin M J, Hu L, Wei B B 2024 Acta Phys. Sin. 73 086401Google Scholar

    [12]

    Chathoth S M, Damaschke B, Samwer K, Schneider S 2008 Appl. Phys. Lett. 93 71902Google Scholar

    [13]

    Hu L, Li L H, Yang S J, Wei B B 2015 Chem. Phys. Lett. 621 91Google Scholar

    [14]

    Binder K, Horbach J, Kob W, Paul W, Varnik F 2004 J. Phys. Condens. Matter 16 S429Google Scholar

    [15]

    Biswas A, Bhattacharyya D 2025 J. Appl. Phys. 137 85301Google Scholar

    [16]

    Syarif J, Badawy K, Hussien H A 2021 Nucl. Mater. Energy 29 101073Google Scholar

    [17]

    Tadmor E B, Elliott R S 2011 Jom 63 17

    [18]

    Thol M, Rutkai G, Köster A, Lustig R, Span R, Vrabec J 2016 J. Phys. Chem. Ref. Data 45 023101Google Scholar

    [19]

    Einstein A 1905 Ann. Phys. 322 549Google Scholar

    [20]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 83101Google Scholar

    [21]

    Fisher J C 1951 J. Appl. Phys. 22 74Google Scholar

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115Google Scholar

    [23]

    Kresse F 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Wang Y, Chen Z, Jiang H 2016 J. Chem. Phys. 144 144106Google Scholar

    [25]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Zou M Q, Dong H Y, Lu Y H, Wang T, Su D K, Wang Y F, Pan X Q, Zou Y 2025 Compt. Mater. Sci. 249 113626Google Scholar

    [27]

    Paul A, Laurila T, Vuorinen V, Divinski S V 2014 Thermodynamics, Diffusion and the Kirkendall Effect in Solids (Cham: Springer International Publishing) pp167−238

    [28]

    Turnbull D 1950 J. Appl. Phys. 21 1022Google Scholar

    [29]

    Wu Y H, Chang J, Wang W L, Hu L, Yang S J, Wei B B 2017 Acta Mater. 129 366Google Scholar

    [30]

    Zhai W, Wei B B 2013 Mater. Lett. 108 145Google Scholar

    [31]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [32]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book. (London: Butterworth) pp998−1005

    [33]

    Liao L X, Altounian Z, Ryan D H 1993 Phys. Rev. B 47 11230Google Scholar

    [34]

    Jaswal S S, Yelon W B, Hadjipanayis G C, Wang Y Z, Sellmyer D J 1991 Phys. Rev. Lett. 67 644Google Scholar

    [35]

    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H 1986 J. Appl. Phys. 59 873Google Scholar

    [36]

    Koyama K, Fujii H 2000 Phys. Rev. B 61 9475Google Scholar

  • [1] 万梓煊, 胡亮, 金英捷, 魏炳波. 静电悬浮条件下难熔Nb81.7Si17.3Hf合金的相选择与共晶生长机制.  , doi: 10.7498/aps.74.20241194
    [2] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制.  , doi: 10.7498/aps.73.20232002
    [3] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟.  , doi: 10.7498/aps.70.20201431
    [4] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究.  , doi: 10.7498/aps.68.20190910
    [5] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究.  , doi: 10.7498/aps.66.136401
    [6] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究.  , doi: 10.7498/aps.65.158101
    [7] 刘金明, 翟薇, 周凯, 耿德路, 魏炳波. 三元(Co0.5Cu0.5)100-xSnx合金的热物理性质与液固相变机理.  , doi: 10.7498/aps.65.228101
    [8] 曹永青, 林鑫, 汪志太, 王理林, 黄卫东. 液氮冷却条件下激光快速熔凝Ni-28 wt%Sn合金组织演变.  , doi: 10.7498/aps.64.108103
    [9] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究.  , doi: 10.7498/aps.63.098101
    [10] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟.  , doi: 10.7498/aps.62.056601
    [11] 郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安. 冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响.  , doi: 10.7498/aps.61.246102
    [12] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律.  , doi: 10.7498/aps.61.216102
    [13] 宋渤, 王晓坡, 吴江涛, 刘志刚. 稀有气体纯质热物理性质的预测.  , doi: 10.7498/aps.60.033401
    [14] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究.  , doi: 10.7498/aps.60.036402
    [15] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理.  , doi: 10.7498/aps.60.108101
    [16] 梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究.  , doi: 10.7498/aps.59.7930
    [17] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟.  , doi: 10.7498/aps.58.4053
    [18] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质.  , doi: 10.7498/aps.56.5969
    [19] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , doi: 10.7498/aps.55.2418
    [20] 杨 森, 苏云鹏, 黄卫东, 周尧和. 激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征.  , doi: 10.7498/aps.52.81
计量
  • 文章访问数:  216
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-09
  • 修回日期:  2025-08-06
  • 上网日期:  2025-08-11

/

返回文章
返回
Baidu
map