搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转与强剪切流协同作用对稀合金激光增材制造中界面不稳定性的影响

李国璇 范海龙

引用本文:
Citation:

旋转与强剪切流协同作用对稀合金激光增材制造中界面不稳定性的影响

李国璇, 范海龙

Synergistic effect of rotation and strong shear flow on interface instability in laser additive manufacturing of dilute alloys

LI Guoxuan, FAN Hailong
cstr: 32037.14.aps.74.20250829
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为改善增材制造过程中由于界面不稳定性引发的晶体结构缺陷问题, 本文基于线性稳定性理论, 系统研究了旋转与强剪切流协同作用对快速凝固中固-液界面形态稳定性的影响机制. 通过对增材制造过程的分析, 构建了包含旋转(泰勒数)与剪切流动参数的数学物理模型, 揭示了多物理场协同作用对界面不稳定性的调控规律. 研究发现强剪切流可有效降低逆临界形态数, 稳定固-液界面; 旋转场的引入则显著缩小了系统的不稳定性区域, 尤其在小波数范围内表现出显著的稳定作用. 此外旋转与流动的耦合效应进一步增强了界面附近溶质的均匀性, 并改善了熔池内的流动形态, 提升了整体的稳定性. 同时高表面能也表现出促进界面稳定的趋势, 旋转场对此效果具有增强作用. 本文的研究结果为实现高质量晶粒结构调控和增材制造工艺的参数优化提供了一定的理论支撑.
    To address the persistent challenge of morphological instability during laser-based additive manufacturing (AM) of dilute alloys, the coupled effects of rotation and strong shear flow on the stability of the solid–liquid interface under rapid solidification conditions are systematically investigated in this work. A comprehensive multi-physics theoretical model is established based on linear stability analysis through introducing key dimensionless parameters: Taylor number (Ta), inverse Schmidt number (${\cal{R}}$), dimensionless surface energy (Γ), and a nonlinear shear velocity profile applied parallel to the interface. The model also accounts for the presence of a solute boundary layer. By solving the resulting perturbation equations, the growth rates of interface disturbances are obtained. The results reveal that strong shear flow markedly increases the critical morphological number, indicating enhanced interfacial stability. When rotation is introduced, the instability region in wavenumber space is significantly compressed, particularly at small wavenumbers, due to the Coriolis-induced stabilization. How the critical conditions vary with the increase of Ta and surface energy is shown in Fig. (a), while the instantaneous perturbation fields of concentration and velocity in the melt pool are exhibited in Fig. (b), where the Coriolis effect promotes symmetrical recirculation cells and suppresses disturbance penetration in the vertical direction. Moreover, the synergy of rotation and shear flow facilitates a more uniform solute distribution near the interface, mitigates compositional gradients, and supports the formation of ordered laminar flow structures. These effects contribute to suppressing constitutional undercooling and refine the microstructure. The model is dimensionless and universal, and key dimensionless groups reflect process inputs, such as solidification rate, thermal gradients, and material diffusivity. This work offers critical physical insights into rotation–flow coupling mechanisms in AM and provides a quantitative framework for optimizing process parameters to control microstructural evolution. These findings are particularly relevant to AM of symmetric components (e.g., axisymmetric gears or biomedical implants) where rotational auxiliary fields can be practically introduced.
      Corresponding author: FAN Hailong, fanhailong_2011@163.com
    [1]

    Srinivasan D, Ananth K 2022 J. Indian Inst. Sci. 102 311Google Scholar

    [2]

    Su X Z, Zhang P L, Huang Y Z 2024 Metals 14 1373Google Scholar

    [3]

    Goncalves A, Ferreira B, Leite M, Ribeiro I 2023 Sustain. Prod. Consum. 42 292Google Scholar

    [4]

    Priyadarshini J, Singh R K, Mishra R, Dora M 2023 Technol. Forecast. Soc. Change 194 122686Google Scholar

    [5]

    赵增亮 2019 硕士学位论文(石家庄: 河北科技大学)

    Zhao Z L 2019 M.S. Thesis (Shijiazhuang: Hebei University of Science and Technology

    [6]

    Zhang M, Qin C, Wang Y F, Hu X Y, Ma J G, Zhuang H, Xue J M, Wan L, Chang J, Zou W G, Wu C T 2022 Addit. Manuf. 54 102721Google Scholar

    [7]

    Zou Z Q, Xu J K, Ren W F, Wang M F, Yu H D 2025 J. Manuf. Processes 135 269Google Scholar

    [8]

    Queguineur A, Marolleau J, Lavergne A, Rückert G 2020 Weld World 64 1389Google Scholar

    [9]

    Choi J, Sung K, Hyun J, Shin S C 2025 Carbohydr. Polym. 349 122972Google Scholar

    [10]

    Ismail I F, Shuib R K, Ramli M R, Chia S K 2024 J. Phys. Conf. Ser. 2907 012024Google Scholar

    [11]

    Chen A N, Liu K, Yan C Z 2024 Front. Mater. 11 1519909Google Scholar

    [12]

    Ye Z W, Hao Z D, Dou R, Wang L, Tang W Z 2024 Int. J. Appl. Ceram. Technol. 21 2824Google Scholar

    [13]

    Guo X H, Meng Y F, Yu Q X, Xu J N, Wu X, Chen H 2025 Opt. Laser Technol. 187 112800Google Scholar

    [14]

    李继峰 2022 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Li J F 2022 M. S. Thesis (Harbin: Harbin Engineering University

    [15]

    Kowal K N, Davis S H 2019 Acta Mater. 164 464Google Scholar

    [16]

    Chen B Y, Zhang Q Y, Sun D K, Wang Z J 2022 J. Cryst. Growth 585 126583Google Scholar

    [17]

    Ma C Z, Zhang R J, Li Z X, Jiang X, Wang Y W, Zhang C, Yin H Q, Qu X H 2023 Integr. Mater. Manuf. Innov. 12 502Google Scholar

    [18]

    Jegatheesan M, Bhattacharya A 2022 Int. J. Heat Mass Transfer 182 121916Google Scholar

    [19]

    Hofmann D C, Roberts S, Otis R, Kolodziejska J, Dillon R P, Suh J, Shapiro A A, Liu Z K, Borgonia J P 2014 Sci. Rep. 4 5357Google Scholar

    [20]

    Griffiths R J, Garcia D, Song J, Vasudevan V K, Steiner M A, Cai W J, Yu H Z 2021 Mater 15 100967Google Scholar

    [21]

    Claude A, Chalvin M, Campcasso S, Hugel V 2024 Procedia CIRP 125 266Google Scholar

    [22]

    Zhang H J, Wu M H, Rodrigues C M G, Ludwig A, Kharicha A, Rónaföldi A, Roósz A, Veres Z, Svéda M 2022 Acta Mater. 241 118391Google Scholar

    [23]

    Zeng C, Huang F, Xue J T, Jia Y, Hu J X 2024 3D Print. Addit. Manuf. 11 e1887Google Scholar

    [24]

    卢林 2023 硕士学位论文(镇江: 江苏科技大学)

    Lu L 2023 M. S. Thesis (Zhenjiang: Jiangsu University of Science and Technology

    [25]

    赵旭山 2023 博士学位论文(武汉: 华中科技大学)

    Zhao X S 2023 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [26]

    Han X, Li C, Sun H, Sun Y C 2024 Weld. World 68 1707Google Scholar

    [27]

    Merchant G J, Davis S H 1990 Acta Metall. Mater. 38 2683Google Scholar

    [28]

    Aziz M J 1982 J. Appl. Phys. 53 1158Google Scholar

  • 图 1  增材制造中的液体熔池凝固

    Fig. 1.  Solidification of the molten pool during additive manufacturing.

    图 2  不同流速下, 逆临界形态数$ {\cal{M}}_{\mathrm{c}}^{ - 1} $随泰勒数$ {T_{\mathrm{a}}} $的变化曲线, 所用参数取值为$ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $, $ \varGamma $ = 0.02

    Fig. 2.  Function of inverse critical morphological number $ {\cal{M}}_{\mathrm{c}}^{ - 1} $ with Taylor number $ {T_{\mathrm{a}}} $ under different flow velocities, with the parameter values set to $ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $ and $ \varGamma $ = 0.02.

    图 3  不同泰勒数$ {T_{\mathrm{a}}} $下, 逆临界形态数$ {\cal{M}}_{\mathrm{c}}^{ - 1} $随$ {v^{ - 1}} $变化的函数关系, 所用参数取值为$ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $, $ \varGamma $ = 0.06

    Fig. 3.  Functional relationship of the inverse critical morphological number $ {\cal{M}}_{\mathrm{c}}^{ - 1} $ with $ {v^{ - 1}} $ under different Taylor numbers $ {T_{\mathrm{a}}} $, with the parameter values set to $ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $ and $ \varGamma $ = 0.06.

    图 4  不同泰勒数$ {T_{\mathrm{a}}} $下, 逆临界形态数$ {\cal{M}}_{\mathrm{c}}^{ - 1} $随表面能$ \varGamma $变化的函数关系, 所用参数取值为$ v = 100 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 0.5 $, $ \beta $ = 0.01

    Fig. 4.  Functional relationship of the inverse critical morphological number $ {\cal{M}}_{\mathrm{c}}^{ - 1} $ with surface energy $ \varGamma $ under different Taylor numbers $ {T_{\mathrm{a}}} $, with the parameter values set to $ v = 100 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 0.5 $ and $ \beta $ = 0.01.

    图 5  平面$ (\alpha {\cal{V}}, {{\cal{M}}^{ - 1}}{\cal{V}}) $上的中性稳定性曲线, 所用参数取值为$ {a_2} = 0 $, $ \beta/v = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}}$ = 1

    Fig. 5.  Neutral stability curve on plane $ (\alpha {\cal{V}}, {{\cal{M}}^{ - 1}}{\cal{V}}) $, with the parameter values set to $ {a_2} = 0 $, $ \beta/v = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $ and $ {\cal{R}}$ = 1.

    图 6  当泰勒数$ {T_{\mathrm{a}}} = 10 $时, 不同流速$ {\cal{V}} $下的中性稳定性曲线, 所用参数取值为$ {a_2} = 0 $, $ \beta = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $, $ \varGamma = $$ 0.001 $, $ {\cal{R}}$ = 1

    Fig. 6.  Neutral stability curves under different flow velocities $ {\cal{V}} $ at a Taylor number of $ {T_{\mathrm{a}}} = 10 $ with the parameter values set to $ {a_2} = 0 $, $ \beta = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $, $ \varGamma = 0.001 $ and $ {\cal{R}}$ = 1.

    图 7  当泰勒数$ {T_{\mathrm{a}}} = 10 $时, 熔池内瞬时扰动浓度场与速度场分布图, 所用参数取值为$ {a_1} = 1.6 $, $ {a_2} = 0 $, $ {\cal{R}}$ = 1. 图中彩色背景表示扰动浓度场, 白色箭头表示扰动速度矢量场

    Fig. 7.  Instantaneous distributions of the perturbation concentration field and velocity field in the melt pool at a Taylor number of $ {T_{\mathrm{a}}} = 10 $, with parameter values set to $ {a_1} = 1.6 $, $ {a_2} = 0 $ and $ {\cal{R}} = 1 $. The colored background represents the perturbation concentration field, while the white arrows indicate the perturbation velocity vector field.

    Baidu
  • [1]

    Srinivasan D, Ananth K 2022 J. Indian Inst. Sci. 102 311Google Scholar

    [2]

    Su X Z, Zhang P L, Huang Y Z 2024 Metals 14 1373Google Scholar

    [3]

    Goncalves A, Ferreira B, Leite M, Ribeiro I 2023 Sustain. Prod. Consum. 42 292Google Scholar

    [4]

    Priyadarshini J, Singh R K, Mishra R, Dora M 2023 Technol. Forecast. Soc. Change 194 122686Google Scholar

    [5]

    赵增亮 2019 硕士学位论文(石家庄: 河北科技大学)

    Zhao Z L 2019 M.S. Thesis (Shijiazhuang: Hebei University of Science and Technology

    [6]

    Zhang M, Qin C, Wang Y F, Hu X Y, Ma J G, Zhuang H, Xue J M, Wan L, Chang J, Zou W G, Wu C T 2022 Addit. Manuf. 54 102721Google Scholar

    [7]

    Zou Z Q, Xu J K, Ren W F, Wang M F, Yu H D 2025 J. Manuf. Processes 135 269Google Scholar

    [8]

    Queguineur A, Marolleau J, Lavergne A, Rückert G 2020 Weld World 64 1389Google Scholar

    [9]

    Choi J, Sung K, Hyun J, Shin S C 2025 Carbohydr. Polym. 349 122972Google Scholar

    [10]

    Ismail I F, Shuib R K, Ramli M R, Chia S K 2024 J. Phys. Conf. Ser. 2907 012024Google Scholar

    [11]

    Chen A N, Liu K, Yan C Z 2024 Front. Mater. 11 1519909Google Scholar

    [12]

    Ye Z W, Hao Z D, Dou R, Wang L, Tang W Z 2024 Int. J. Appl. Ceram. Technol. 21 2824Google Scholar

    [13]

    Guo X H, Meng Y F, Yu Q X, Xu J N, Wu X, Chen H 2025 Opt. Laser Technol. 187 112800Google Scholar

    [14]

    李继峰 2022 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Li J F 2022 M. S. Thesis (Harbin: Harbin Engineering University

    [15]

    Kowal K N, Davis S H 2019 Acta Mater. 164 464Google Scholar

    [16]

    Chen B Y, Zhang Q Y, Sun D K, Wang Z J 2022 J. Cryst. Growth 585 126583Google Scholar

    [17]

    Ma C Z, Zhang R J, Li Z X, Jiang X, Wang Y W, Zhang C, Yin H Q, Qu X H 2023 Integr. Mater. Manuf. Innov. 12 502Google Scholar

    [18]

    Jegatheesan M, Bhattacharya A 2022 Int. J. Heat Mass Transfer 182 121916Google Scholar

    [19]

    Hofmann D C, Roberts S, Otis R, Kolodziejska J, Dillon R P, Suh J, Shapiro A A, Liu Z K, Borgonia J P 2014 Sci. Rep. 4 5357Google Scholar

    [20]

    Griffiths R J, Garcia D, Song J, Vasudevan V K, Steiner M A, Cai W J, Yu H Z 2021 Mater 15 100967Google Scholar

    [21]

    Claude A, Chalvin M, Campcasso S, Hugel V 2024 Procedia CIRP 125 266Google Scholar

    [22]

    Zhang H J, Wu M H, Rodrigues C M G, Ludwig A, Kharicha A, Rónaföldi A, Roósz A, Veres Z, Svéda M 2022 Acta Mater. 241 118391Google Scholar

    [23]

    Zeng C, Huang F, Xue J T, Jia Y, Hu J X 2024 3D Print. Addit. Manuf. 11 e1887Google Scholar

    [24]

    卢林 2023 硕士学位论文(镇江: 江苏科技大学)

    Lu L 2023 M. S. Thesis (Zhenjiang: Jiangsu University of Science and Technology

    [25]

    赵旭山 2023 博士学位论文(武汉: 华中科技大学)

    Zhao X S 2023 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [26]

    Han X, Li C, Sun H, Sun Y C 2024 Weld. World 68 1707Google Scholar

    [27]

    Merchant G J, Davis S H 1990 Acta Metall. Mater. 38 2683Google Scholar

    [28]

    Aziz M J 1982 J. Appl. Phys. 53 1158Google Scholar

  • [1] 杨三祥, 刘超, 郭宁, 王正汹. 磁场梯度对旋转辐条不稳定性的影响.  , 2025, 74(23): . doi: 10.7498/aps.74.20251010
    [2] 陈凯, 蒋晗. 远场来流对深胞晶界面形态稳定性的影响.  , 2025, 74(13): 136801. doi: 10.7498/aps.74.20250357
    [3] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述.  , 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [4] 许莫非, 于翔, 张世健, Gennady Efimovich Remnev, 乐小云. 一种用于强流脉冲离子束的束流输出稳定性实时监测方法.  , 2023, 72(17): 175205. doi: 10.7498/aps.72.20230854
    [5] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [6] 张忠强, 范晋伟, 张福建, 程广贵, 丁建宁. 水流在旋转黑磷纳米管内轴向驱动特性.  , 2020, 69(11): 110201. doi: 10.7498/aps.69.20200116
    [7] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性.  , 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [8] 党南南, 张正元, 张家忠. Rijke管热声振荡的稳定性切换行为研究.  , 2018, 67(13): 134301. doi: 10.7498/aps.67.20180269
    [9] 张大羽, 罗建军, 郑银环, 袁建平. 基于旋转场曲率的二维剪切梁单元建模.  , 2017, 66(11): 114501. doi: 10.7498/aps.66.114501
    [10] 秦修培, 耿德路, 洪振宇, 魏炳波. 超声悬浮过程中圆柱体的旋转运动机理研究.  , 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [11] 毕海亮, 魏来, 范冬梅, 郑殊, 王正汹. 旋转圆柱等离子体中撕裂模和Kelvin-Helmholtz不稳定性的激发特性.  , 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [12] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解.  , 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [13] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响.  , 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [14] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析.  , 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [15] 简广德, 董家齐. 托卡马克等离子体中动力剪切阿尔芬波不稳定性的数值研究.  , 2005, 54(4): 1641-1647. doi: 10.7498/aps.54.1641
    [16] 林 鑫, 李 涛, 王琳琳, 苏云鹏, 黄卫东. 单相合金凝固过程时间相关的界面稳定性(I)理论分析.  , 2004, 53(11): 3971-3977. doi: 10.7498/aps.53.3971
    [17] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比.  , 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [18] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析.  , 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [19] 何钰泉, 梁宝社, 刘书声. 中等半径比反向旋转圆Couette系统流动稳定性的实验和数值研究.  , 1998, 47(10): 1658-1664. doi: 10.7498/aps.47.1658
    [20] 柯孚久, 蔡诗东, 陈骝, 张承福, 祁祥麟. 强碰撞下的漂移波稳定性.  , 1988, 37(8): 1275-1283. doi: 10.7498/aps.37.1275
计量
  • 文章访问数:  394
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-25
  • 修回日期:  2025-07-23
  • 上网日期:  2025-08-14
  • 刊出日期:  2025-10-05

/

返回文章
返回
Baidu
map