搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚变装置不同壁处理涂层在氘粒子轰击下的物理溅射行为模拟研究

黄向玫 胡毅 曹诚志

引用本文:
Citation:

聚变装置不同壁处理涂层在氘粒子轰击下的物理溅射行为模拟研究

黄向玫, 胡毅, 曹诚志

Simulation study of physical sputtering behavior of different wall conditioning layers in fusion devices under deuterium particle bombardment

HUANG Xiangmei, HU Yi, CAO Chengzhi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 聚变装置表面涂覆壁处理如锂化、硼化、硅化等形成的涂层在高能氘粒子的轰击下会因为物理化学溅射损失, 从而使壁条件变差, 影响等离子体放电性能. 为了评估不同壁涂层的溅射损失行为, 本文采用两体碰撞近似模型, 对以碳、钨为基材的锂、硼和硅涂层材料在氘粒子轰击下的物理溅射行为进行了模拟分析. 结果表明, 因锂具有低的表面结合能而硅具有高的原子序数, 锂和硅分别在一定入射条件下溅射产额最大. 对于双层靶, 钨基涂层的溅射产额在特定能量出现剧增, 主要是由于钨溅射阈值高, 入射粒子在钨界面被大量反射, 并且具有较高的能量. 最后, 由于靶表面成分会随着入射通量增加而变化, 涂层材料的溅射产额也随之变化. 本研究为聚变装置壁处理涂层寿命的评估提供数据支持, 并为壁处理涂层材料设计及处理策略提供了重要的理论参考.
    Wall conditioning coatings—lithium (Li), boron (B) and silicon (Si) —introduced by lithiumization, boronization, or siliconization, serve as a critical strategy for suppressing fuel recycling and reducing impurity fluxes from the wall of a tokamak. These techniques directly improve plasma initiation, reproducibility, energy confinement, and operational stability in fusion devices. However, these coatings undergo both physical and chemical sputtering by boundary plasma bombardment. This erosion behavior critically determines coating lifetime and, consequently, long-pulse plasma performance. To evaluate the influence of physical sputtering on coating durability and to compare material-specific differences, binary collision approximation (BCA) simulations are conducted to investigate the physical sputtering behaviors of Li, B, and Si coatings. Carbon (C) and tungsten (W) substrates are also modeled to assess interface effects. The results reveal the significant differences in sputtering yields between Li, B, and Si in incident angles and deuterium energies. Owing to its low surface binding energy, lithium exhibits the highest sputtering yield at large angles and low energies, while silicon, with the highest atomic number, presents the highest sputtering yield at small angles and high energies. Sputtering yields of carbon-based and tungsten-based coatings vary with angle and energy, driven by differences in deuterium backscattering between the interface sputtering and substrate sputtering. Notably, for tungsten-based coatings, the sputtering yields increase dramatically at specific energies. This occurs because tungsten’s high surface binding energy causes incident deuterium atoms to reflect off the tungsten interface and then collide with coating elements. Consequently, when the energy transferred to the surface element is higher than its sputtering threshold, the sputtering yield increases. Additionally, increasing incident fluence modifies the target composition, leading to corresponding changes in the sputtering yields of coating materials. In summary, coating materials should be selected according to the expected angle distribution and energy distribution of the incident plasma particles. To suppress the abrupt yield increase observed in tungsten substrates at specific energies, the coatings must be sufficiently thick. These findings provide a theoretical basis for selecting conditioning materials and optimizing wall conditioning strategies in fusion devices.
  • 图 1  溅射产额随粒子入射角度变化曲线 (a) 入射氘粒子能量500 eV; (b) 入射氘粒子能量1000 eV

    Fig. 1.  Dependence of sputtering yield on injection angle: (a) Injection energy 500 eV; (b) injection energy 1000 eV.

    图 2  溅射产额随入射能量的变化曲线 (a)氘粒子入射角度0°; (b)氘粒子入射角度40°; (c)氘粒子入射角度80°

    Fig. 2.  Dependence of sputtering yield on injection energy: (a) Injection angle 0°; (b) injection angle 40°; (c) injection angle 80°.

    图 3  溅射产额(a)和靶厚(b)随入射通量的变化

    Fig. 3.  Dependence of (a) sputtering yield and (b) target thickness on injection fluence.

    图 4  溅射产额随粒子入射角度变化曲线 (a)入射氘粒子能量500 eV; (b)入射氘粒子能量1000 eV

    Fig. 4.  Dependence of sputtering yield on injection angle: (a) Injection energy 500 eV; (b) injection energy 1000 eV.

    图 5  溅射产额随入射能量的变化曲线 (a)氘粒子入射角度0°, 涂层厚度20 nm; (b)氘粒子入射角度0°, 涂层厚度100 nm; (c)氘粒子入射角度40°, 涂层厚度20 nm; (d)氘粒子入射角度40°, 涂层厚度100 nm; (e)氘粒子入射角度80°, 涂层厚度20 nm; (f)氘粒子入射角度80°, 涂层厚度100 nm

    Fig. 5.  Dependence of sputtering yield on injection energy: (a) Injection angle 0°, coating thickness 20 nm; (b) injection angle 0°, coating thickness 100 nm; (c) injection angle 40°, coating thickness 20 nm; (d) injection angle 40°, coating thickness 100 nm; (e) injection angle 80°, coating thickness 20 nm; (f) injection angle 80°, coating thickness 100 nm.

    图 6  溅射产额及靶材厚度随入射通量的变化情况 (a)碳基靶溅射产额变化; (b)钨基靶溅射产额变化; (c)碳基靶厚度变化; (d)钨基靶厚度变化

    Fig. 6.  Dependence of sputtering yield and target thickness on injection fluence: (a) Sputtering yield of carbon substrates; (b) sputtering yield of tungsten substrates; (c) thickness of carbon substrates; (d) thickness of tungsten substrates.

    表 1  模拟分析涉及的材料相关参数

    Table 1.  Related material parameters input for simulation.

    材料 原子序数Z 表面结合能Es/eV 移位能Ed/eV 密度/(kg·m–3) 原子数密度/(atom·cm–3)
    锂 Li 3 1.67 20 0.534 4.633×1022
    硼 B 5 5.73 20 2.350 1.309×1023
    石墨C 6 7.41 25 2.253 1.130×1023
    硅 Si 14 4.70 13 2.321 4.977×1022
    钨 W 74 8.68 38 19.350 6.338×1022
    氘D 1 4.270×1022
    下载: 导出CSV
    Baidu
  • [1]

    朱毓坤 2010 核真空科学技术(北京: 原子能出版社) 第160—177页

    Zhu Y K 2010 Vacuum Science and technology in Nuclear Engineering (Beijing: Atomic Energy Press) pp160-177

    [2]

    Pitts R A, Loarte A, Wauters T, Dubrov M, Gribov Y, Köchl F, Pshenov A, Zhang Y, Artola J, Bonnin X, Chen L, Lehnen M, Schmid K, Ding R, Frerichs H, Futtersack R, Gong X, Hagelaar G, Hodille E, Hobirk J, Krat S, Matveev D, Paschalidis K, Qian J, Ratynskaia S, Rizzi T, Rozhansky V, Tamain P, Tolias P, Zhang L, Zhang W 2025 Nucl. Mater. Energy 42 101854Google Scholar

    [3]

    Winter J 1996 Plasma Phys. Controlled Fusion 38 1503Google Scholar

    [4]

    Kaita R 2019 Plasma Phys. Controlled Fusion 61 113001Google Scholar

    [5]

    Skinner C H, Allain J P, Bell M G, Friesen F Q L, Heim B, Jaworski M A, Kugel H, Maingi R, Rais B, Taylor C N 2011 Phys. Scr. T 145 014020

    [6]

    Sun Z, Maingi R, Hu J S, Xu W, Zuo G Z, Yu Y W, Wu C R, Huang M, Meng X C, Zhang L, Wang L, Mao S T, Ding F, Mansfield D K, Canik J, Lunsford R, Bortolon A, Gong X Z 2019 Nucl. Mater. Energy 19 124Google Scholar

    [7]

    Cheng Y X, Zhang L, Hu A L, Shigeru Morita S, Zhang W M, Zhou C X, Mitnik D, Zhang F L, Ma J Y, Li Z W, Cao Y M, Liu H Q 2024 Nucl. Mater. Energy 41 101744Google Scholar

    [8]

    Rohde V, Balden M, Krieger K, Neu R, ASDEX Upgrade Team 2025 Nucl. Mater. Energy 43 101923Google Scholar

    [9]

    Masuzaki S, Shoji M, Nespoli F, Lunsford R, Motojima G, Yajima M, Tokitani M, Oishi T, Kawate T, Goto M 2025 Nucl. Mater. Energy 42 101843Google Scholar

    [10]

    Samm U, Bogen P, Esser G, Hey J D, Hintz E, Huber A, Könen L, Lie Y T, Mertens P, Philipps V, Pospieszcyk A, Rusbüldt D, Seggern J, Schorn R P, Schweer B, Tokar′ M, Unterberg B, Vietzke E, Wienhold P, Winter J 1995 J. Nucl. Mater. 220 25

    [11]

    Duan X R, Cao Z, Cui C H, Cai X, Sun H H, Ding X T, Pan Y D, Wang M X, Yang Q W, Song X M, HL-2A Team 2007 J. Nucl. Mater. 363-365 1340

    [12]

    Effenberg F, Abe S, Sinclair G, Abrams T, Bortolon A, Wampler W R, Laggner F M, Rudakov D L, Bykov I, Lasnier C J, Mauzey D, Nagy A, Nazikian R, Scotti F, Wang H Q, Wilcox R S, the DIII-D Team 2023 Nucl. Fusion 63 106004Google Scholar

    [13]

    Xu W, Hu J, Sun Z, Maingi R, Zhang L, Yu Y W, Li C L, Zuo G Z, Qian Y Z, Huang M, Meng X C, Gao W, Duan Y M, Chen Y J, Wang K, Lin X D, Gao X 2020 Plasma Phys. Controlled Fusion 62 085012Google Scholar

    [14]

    Sereda S, Brezinsek S, Wang E, Barbui T, Brakel R, Buttenschön B, Goriaev A, U. Hergenhahn, Höfel U, Jakubowski M, Knieps A, König R, Krychowiak M, Kwak S, Liang Y, Naujoks D, Pavone A, Rasinski M, Rudischhauser L, Ślęczka M, Svensson J, Viebke H, Wauters T, Wei Y, Winters V, Zhang D, the W7-X team 2020 Nucl. Fusion 60 086007Google Scholar

    [15]

    Dibon M, Rohde V, Stelzer F, Hegele K, Uhlmann M, ASDEX Upgrade Team 2012 Fusion Eng. Des. 165 112233

    [16]

    Tramontin L, Antoni V, Bagatin M, Boscarino D, Cattaruzza E, Rigato V, Zandolin S 1999 J. Nucl. Mater. 266-269 709

    [17]

    Miyagawa Y, Nakadate H, Djurabekova F, Miyagawa S 2002 Surf. Coat. Technol. 158 87

    [18]

    Miyagawa Y, Miyagawa S 1983 J. Appl. Phys. 54 7124.Google Scholar

    [19]

    Miyagawa Y, Ikeyama M, Saito K, Massouras G, Miyagawa S 1991 J. Appl. Phys. 70 7289Google Scholar

    [20]

    邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 40 659Google Scholar

    Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659Google Scholar

    [21]

    陆峰 2022 真空镀膜技术与应用 (北京: 化学工业出版社)第149—153页

    Lu F 2022 Technology and Application of Vacuum Coating (Beijing: Chemical Industry Press) pp149-153

    [22]

    邵其鋆, 潘正瑛 1995 44 479

    Shao Q Y, Pan Z Y 1995 Acta Phys. Sin. 1995 44 479

  • [1] 息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑. LaAlO3/SrTiO3界面增强光伏效应.  , doi: 10.7498/aps.70.20201330
    [2] 陈东, 余本海. 外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性.  , doi: 10.7498/aps.69.20200839
    [3] 张龙艳, 徐进良, 雷俊鹏. 纳米尺度下气泡核化生长的分子动力学研究.  , doi: 10.7498/aps.67.20180993
    [4] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响.  , doi: 10.7498/aps.65.117701
    [5] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型.  , doi: 10.7498/aps.62.044702
    [6] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质.  , doi: 10.7498/aps.61.136801
    [7] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展.  , doi: 10.7498/aps.61.217306
    [8] 许涌, 蔡建旺. 几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响.  , doi: 10.7498/aps.60.117308
    [9] 王建国, 徐忠锋, 赵永涛, 王瑜玉, 李德慧, 赵迪, 肖国青. 反冲原子对低速离子轰击Si表面时电子发射产额的影响.  , doi: 10.7498/aps.59.7803
    [10] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统.  , doi: 10.7498/aps.55.6008
    [11] 张永康, 孔德军, 冯爱新, 鲁金忠, 张雷洪, 葛 涛. 涂层界面结合强度检测研究(Ⅰ):涂层结合界面应力的理论分析.  , doi: 10.7498/aps.55.2897
    [12] 缪智武, 丁建文, 颜晓红, 唐娜斯. 畸变对hopping电导的影响:ThueMorse纳米结构模型.  , doi: 10.7498/aps.52.1213
    [13] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响.  , doi: 10.7498/aps.49.2290
    [14] 邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛. 离子轰击入射角对溅射参数的影响.  , doi: 10.7498/aps.40.659
    [15] 邵其鋆, 陈建新, 吴士明, 潘正瑛, 霍裕昆, 高兴华. 聚变α粒子对第一壁辐照损伤的蒙特-卡罗研究(Ⅱ)——溅射.  , doi: 10.7498/aps.40.1244
    [16] 王震遐, 章骥平, 潘冀生, 陶振兰, 张慧明, 张伟坪, 卢兆伦. B掺杂对Ni原子溅射产额的影响.  , doi: 10.7498/aps.40.1723
    [17] 霍裕昆, 吴选红, 邵其鋆, 陈建新, 吴士明, 潘正瑛, 高兴华. 聚变α粒子对第一壁辐照损伤的蒙特-卡罗研究(Ⅰ)——轰击第一壁的α粒子能谱.  , doi: 10.7498/aps.40.1236
    [18] 潘冀生, 王震遐, 陶振兰, 章骥平, 张慧明, 赵烈. 离子轰击引起的表面形貌对Ag的溅射产额的影响.  , doi: 10.7498/aps.40.2018
    [19] 尤广建, 余梅, 罗惠临. 溅射氧化铁薄膜的Hall效应.  , doi: 10.7498/aps.37.1613
    [20] 许金奎. 热核反应中次级粒子的总产额和能谱.  , doi: 10.7498/aps.29.1151
计量
  • 文章访问数:  234
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-20
  • 修回日期:  2025-07-15
  • 上网日期:  2025-08-12

/

返回文章
返回
Baidu
map