搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视觉变换器的高精度光子晶体能带预测

陈冠桦 姚俊驰 朱惠芳 智婷 汪金 薛俊俊 陈琳 陶涛 陶志阔

引用本文:
Citation:

基于视觉变换器的高精度光子晶体能带预测

陈冠桦, 姚俊驰, 朱惠芳, 智婷, 汪金, 薛俊俊, 陈琳, 陶涛, 陶志阔

High-precision prediction of photonic band structure based on vision transformer model

CHEN Guanhua, YAO Junchi, ZHU Huifang, ZHI Ting, WANG Jin, XUE Junjun, CHEN Lin, TAO Tao, TAO Zhikuo
cstr: 32037.14.aps.74.20250778
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光子晶体因其独特的能带结构在光子学领域具有重要应用前景, 而准确预测其能带结构对于光子器件的设计与优化也至关重要. 鉴于此, 本文应用视觉变换器(vision transformer, ViT)模型, 探索高效、准确的光子晶体能带结构预测方法. 首先, 通过传统数值仿真方法得到光子晶体的能带结构数据, 构建了训练和测试数据集; 其次, 利用数据集对ViT模型进行训练, 训练过程中模型展现出良好的学习能力, 损失函数值持续下降, 最低可至4.42×10–6; 最终, 测试结果表明, ViT模型预测平均均方误差(MSE)低至3.46×10–5, 决定系数(R2)达到0.9996, 表明ViT模型具有极高的预测精度和良好的泛化能力. 研究表明, ViT模型能够有效预测光子晶体的能带结构, 为光子晶体相关研究和应用提供一种新的高效预测工具, 有望推动光子器件设计的进一步发展.
    Photonic crystals have received widespread attention in the field of photonics due to their unique band structures, which can manipulate the propagation of light through periodic dielectric arrangements. Accurate prediction of these band structures is crucial for designing and optimizing photonic devices. However, traditional numerical simulation methods, such as plane wave expansion and finite element methods, are often limited by high computational complexity and long processing times. In this study, we explore the application of the vision transformer (ViT) model to predicting the band structures of photonic crystals efficiently and accurately. To further validate the superiority of the ViT model, we also conduct experiments by using CNN and MLP models on the same scale for band structure prediction. We first generate a dataset of photonic band structures by using traditional numerical simulations and then train the ViT model on this dataset. The ViT model demonstrates excellent learning capabilities, with the loss function value decreasing to as low as 4.42×10–6 during training. The test results show that the average mean squared (MSE) error of the ViT model predictions is 3.46×10–5, and the coefficient of determination (R2) reaches 0.9996, indicating high prediction accuracy and good generalization capability. In contrast, the CNN and MLP models, despite being trained on the same dataset and having the same computational resource allocation, show higher MSE values and lower R2 scores. This highlights the superior performance of the ViT model in predicting the band structures of photonic crystals. Our study shows that the ViT model can effectively predict the band structures of photonic crystals, providing a new and efficient prediction tool for relevant research and applications. This work is expected to advance the development of photonic device design by offering a rapid and accurate alternative to traditional methods.
      通信作者: 陶志阔, zktao@njupt.edu.cn
      Corresponding author: TAO Zhikuo, zktao@njupt.edu.cn
    [1]

    Heaton J, Goodfellow I, Bengio Y, Courville A 2018 Genet. Program. Evolution Mach. 19 305Google Scholar

    [2]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [3]

    Yablonovitch E 1995 Phys. Rev. Lett. 58 2059Google Scholar

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [5]

    Joannopoulos J D, Meade R D, Winn J N 2008 Photonic Crystals: Molding the Flow of Light (Princeton NJ: Princeton Univ. Press

    [6]

    Nyachionjeka K, Tarus H, Langat K 2020 Sci. Afr. 9 e00511Google Scholar

    [7]

    Bogaerts W, Pérez D, Capmany J, Miller D A B, Poon J, Englund D, Morichetti F, Melloni A 2020 Nature 586 207Google Scholar

    [8]

    Fallahi V, Kordrostami Z, Hosseini M 2024 Sci. Rep. 14 2001Google Scholar

    [9]

    Fu Y L, Hu X Y, Gong Q H 2013 Phys. Lett. A 377 329Google Scholar

    [10]

    Safinezhad A, Babaei Ghoushji H, Shiri M, Rezaei M H 2021 Opt. Quant. Electron. 53 259Google Scholar

    [11]

    Giden I H, Mahariq I 2024 Opt. Quant. Electron. 56 170Google Scholar

    [12]

    Tavares S C da C, Sousa F B de, Oliveira L A de, Sousa F M de, Miranda I R S, Costa M B C 2024 Opt. Quant. Electron. 56 622Google Scholar

    [13]

    Sathyadevaki R, Raja A S, Sundar D S 2017 Photon. Netw. Commun. 33 77Google Scholar

    [14]

    Bazian M 2021 Photon. Netw. Commun. 41 57Google Scholar

    [15]

    Liu Y, Zhao T L, Ju W W, Shi S Q 2017 J. Materiomics 3 159Google Scholar

    [16]

    Ma W, Liu Z C, Kudyshev Z A, Boltasseva A, Cai W S, Liu Y M 2021 Nat. Photonics 15 77Google Scholar

    [17]

    Christensen T, Loh C, Picek S, Jakobović D, Jing L, Fisher S, Ceperic V, Joannopoulos J D, Soljačić M 2020 Nanophotonics 9 4183Google Scholar

    [18]

    Ferreira A da S, Silveira G N M, Figueroa H E H 2018 SBFoton International Optics and Photonics Conference Campinas, Brazil, October 8–10, 2019 p1

    [19]

    He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, NV, USA, June 27–30, 2016 p770

    [20]

    Girshick R 2015 IEEE International Conference on Computer Vision Santiago, Chile, December 7–13, 2015 p1440

    [21]

    Shen D G, Wu G R, Suk H 2017 Annu. Rev. Biomed. Eng. 19 221Google Scholar

    [22]

    Vinyals O, Toshev A, Bengio S, Erhan D 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 652Google Scholar

    [23]

    Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N 2020 arXiv: 2010.11929 [cs.CV]

    [24]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [25]

    Li Y L, Yin G H, Yan G W, Yao S 2025 Mech. Syst. Sig. Process. 224 111975Google Scholar

    [26]

    Michelucci U, Venturini F 2021 Mach. Learn. Knowl. Extr. 3 357Google Scholar

  • 图 1  (a) 随机生成的4个基本单元示意图; (b) 某一种光子晶体能带结构以及在不可约布里渊区顶点处的高对称点

    Fig. 1.  (a) Four constructed randomly unit cells; (b) the photonic band diagram of one proposed structure and high symmetric point at the vertex of irreducible Brillouin region.

    图 2  COMSOL计算光子晶体能带结构以及利用ViT模型进行预测的框架图

    Fig. 2.  Framework of the photonic band diagram calculation by COMSOL and the prediction by ViT model.

    图 3  (a), (c), (e) COMSOL仿真与ViT预测的不同单元格的特征频率对比, 插图展示了相应单元格结构; (b), (d), (e) COMSOL仿真与ViT预测的不同单元格的光子带结构图对比, 分别对应于(a), (c), (e)中的单元格

    Fig. 3.  (a), (c), (e) Comparison of eigen frequencies simulated by COMSOL versus predicted by ViT for different unit cells shown in the inset; (b), (d), (f) comparison of photonic band diagrams simulated by COMSOL versus predicted by ViT for different unit cells shown in panels (a), (c), (e), respectively.

    图 4  (a) ViT模型在训练周期的损失收敛情况; (b) 使用ViT预测与仿真之间的绝对误差分布以及R2的分布; (c) 不同能带对应的MSE和R2

    Fig. 4.  (a) ViT model’s loss convergence over training epochs; (b) distribution of absolute errors between predicted and simulated frequencies using ViT, along with the distribution of R2 values; (c) MSE and R2 values for different band index.

    图 5  (a) 浅层CNN模型随训练迭代的损失收敛; (b) 使用浅层CNN预测频率与模拟频率的绝对误差分布, 以及R2值的分布

    Fig. 5.  (a) Shallow CNN model’s loss convergence over training epochs; (b) distribution of absolute errors between predicted and simulated frequencies using Shallow CNN, along with the distribution of R2 values.

    图 6  (a) 深层CNN模型随训练迭代的损失收敛; (b) 使用深层CNN预测频率与模拟频率的绝对误差分布, 以及R2值的分布

    Fig. 6.  (a) Deep CNN model’s loss convergence over training epochs; (b) distribution of absolute errors between predicted and simulated frequencies using deep CNN, along with the distribution of R2 values.

    Baidu
  • [1]

    Heaton J, Goodfellow I, Bengio Y, Courville A 2018 Genet. Program. Evolution Mach. 19 305Google Scholar

    [2]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [3]

    Yablonovitch E 1995 Phys. Rev. Lett. 58 2059Google Scholar

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [5]

    Joannopoulos J D, Meade R D, Winn J N 2008 Photonic Crystals: Molding the Flow of Light (Princeton NJ: Princeton Univ. Press

    [6]

    Nyachionjeka K, Tarus H, Langat K 2020 Sci. Afr. 9 e00511Google Scholar

    [7]

    Bogaerts W, Pérez D, Capmany J, Miller D A B, Poon J, Englund D, Morichetti F, Melloni A 2020 Nature 586 207Google Scholar

    [8]

    Fallahi V, Kordrostami Z, Hosseini M 2024 Sci. Rep. 14 2001Google Scholar

    [9]

    Fu Y L, Hu X Y, Gong Q H 2013 Phys. Lett. A 377 329Google Scholar

    [10]

    Safinezhad A, Babaei Ghoushji H, Shiri M, Rezaei M H 2021 Opt. Quant. Electron. 53 259Google Scholar

    [11]

    Giden I H, Mahariq I 2024 Opt. Quant. Electron. 56 170Google Scholar

    [12]

    Tavares S C da C, Sousa F B de, Oliveira L A de, Sousa F M de, Miranda I R S, Costa M B C 2024 Opt. Quant. Electron. 56 622Google Scholar

    [13]

    Sathyadevaki R, Raja A S, Sundar D S 2017 Photon. Netw. Commun. 33 77Google Scholar

    [14]

    Bazian M 2021 Photon. Netw. Commun. 41 57Google Scholar

    [15]

    Liu Y, Zhao T L, Ju W W, Shi S Q 2017 J. Materiomics 3 159Google Scholar

    [16]

    Ma W, Liu Z C, Kudyshev Z A, Boltasseva A, Cai W S, Liu Y M 2021 Nat. Photonics 15 77Google Scholar

    [17]

    Christensen T, Loh C, Picek S, Jakobović D, Jing L, Fisher S, Ceperic V, Joannopoulos J D, Soljačić M 2020 Nanophotonics 9 4183Google Scholar

    [18]

    Ferreira A da S, Silveira G N M, Figueroa H E H 2018 SBFoton International Optics and Photonics Conference Campinas, Brazil, October 8–10, 2019 p1

    [19]

    He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, NV, USA, June 27–30, 2016 p770

    [20]

    Girshick R 2015 IEEE International Conference on Computer Vision Santiago, Chile, December 7–13, 2015 p1440

    [21]

    Shen D G, Wu G R, Suk H 2017 Annu. Rev. Biomed. Eng. 19 221Google Scholar

    [22]

    Vinyals O, Toshev A, Bengio S, Erhan D 2017 IEEE Trans. Pattern Anal. Mach. Intell. 39 652Google Scholar

    [23]

    Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N 2020 arXiv: 2010.11929 [cs.CV]

    [24]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [25]

    Li Y L, Yin G H, Yan G W, Yao S 2025 Mech. Syst. Sig. Process. 224 111975Google Scholar

    [26]

    Michelucci U, Venturini F 2021 Mach. Learn. Knowl. Extr. 3 357Google Scholar

  • [1] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测.  , 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [2] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建.  , 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [3] 韩奎, 王娟娟, 周菲, 沈晓鹏, 沈义峰, 吴玉喜, 唐刚. 基于光子晶体的Kretschmann结构中自准直光束的Goos-Hänchen位移研究.  , 2013, 62(4): 044221. doi: 10.7498/aps.62.044221
    [4] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究.  , 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [5] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华. 一种基于光子晶体结构的坦克涂层设计.  , 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [6] 王慧琴, 方利广, 王一凡, 余奥列. 光子晶体晶粒尺寸和排列结构对随机激光辐射特性的影响.  , 2011, 60(1): 014203. doi: 10.7498/aps.60.014203
    [7] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究.  , 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [8] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计.  , 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [9] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计.  , 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [10] 钟琪, 韩奎, 沈晓鹏, 童星, 吴琼华, 李明雪, 吴玉喜. Archimedes 32,4,3,4结构光子晶体中与偏振无关的自准直分束器.  , 2010, 59(10): 7060-7065. doi: 10.7498/aps.59.7060
    [11] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [12] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化.  , 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [13] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究.  , 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [14] 席丽霞, 唐先锋, 王少康, 张晓光. 基于光子晶体光纤的相位再生器的设计及优化.  , 2009, 58(9): 6243-6247. doi: 10.7498/aps.58.6243
    [15] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析.  , 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [16] 朱永政, 尹计秋, 邱明辉. 非密堆积TiO2空心微球光子晶体的制备与能带分析.  , 2008, 57(12): 7725-7728. doi: 10.7498/aps.57.7725
    [17] 温燮文, 董建文, 汪河洲. 无规结构全角高反一维光子晶体的场强分布.  , 2006, 55(6): 2781-2784. doi: 10.7498/aps.55.2781
    [18] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究.  , 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [19] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究.  , 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [20] 董慧媛, 刘 楣, 吴宗汉, 汪 静, 王振林. 由介质球构成的三维光子晶体能带结构的平面波研究.  , 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
计量
  • 文章访问数:  344
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-17
  • 修回日期:  2025-07-11
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map