搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探测器高能伽马效率刻度用放射性核素56Co的衰变数据

田榕赫 杨东 于伟翔 黄小龙 李小安 石明松

引用本文:
Citation:

探测器高能伽马效率刻度用放射性核素56Co的衰变数据

田榕赫, 杨东, 于伟翔, 黄小龙, 李小安, 石明松

Decay data of radionuclide 56Co for high-energy gamma efficiency calibration of detectors

TIAN Ronghe, YANG Dong, YU Weixiang, HUANG Xiaolong, LI Xiaoan, SHI Mingsong
cstr: 32037.14.aps.74.20250743
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 56Co衰变释放的γ射线能量范围为0.84—3.55 MeV, 其衰变数据是探测器效率刻度的重要依据. 早期针对56Co γ相对强度测量数据在Eγ > 2.5 MeV的高能区存在系统性偏差. 针对此问题, 本研究基于核科学参考文献库(Nuclear Science References, NSR)中的实验测量数据, 重点综合了2000年后的5项高精度实验测量结果, 对半衰期及γ发射几率等关键衰变数据进行系统分析, 给出了一套可用于探测器效率刻度的56Co衰变推荐数据. 在高能区段, 本工作所给出结果低于ENSDF现有评价数据约2%. 该推荐数据适用于高能伽马探测器的效率刻度, 可为Eγ > 2.5 MeV能区提供更准确的参考依据. 本文数据集可在科学数据银行数据库https://doi.org/10.57760/sciencedb.j00213.00169中访问获取.
    56Co, with γ-ray energies covering the ranging from 0.84–3.55 MeV, is an important radionuclide for calibrating Ge detector. Based on the main measurements of D. C. Camp et al. (Camp D C, Meredith G L 1971 Nucl. Phys. A 166 349) and M. E. Phelps et al (Phelps M, Sarantites D, Winn W 1970 Nucl. Phys. A 149 647). before 2000, the probability of γ-ray emission is evaluated and recommended. The values reported by D. C. Camp, however, are systematically lower in high energy range. In this work, using the experimental measurements obtained from the Nuclear Science Reference Library, the main decay data, such as half-life and γ-ray emission probabilities, are evaluated and summarized. In the Eγ < 2.5 MeV energy region, the new evaluation data in this work are in good agreement with the results of the ENSDF evaluation (Huo J, Huo S, Yang D 2011 Nucl. Data Sheets 112 1513) and the summary report published by IAEA in 1991 (Bambynek W, Barta T, Jedlovszky R, Christmas P, Coursol N, Debertin K, Helmer R, Nichols A, Schima F, Yoshizawa Y 1991 report IAEATECDOC-619). However, in the high-energy region, i.e., in the Eγ > 2.5 MeV energy region, the present work gives lower values than the other evaluation data. The deviation at 3.4 MeV is as high as 2.7%. Rationality of the present evaluation and corrected method will be dependent on new measurements, and more precise standard data are desirable. The datasets presented in this paper, including the ENDF and ENSDF format decay data files for 56Co, may be available at https://doi.org/10.57760/sciencedb.j00213.00169.
      通信作者: 杨东, dyang@jlu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602000)资助的课题.
      Corresponding author: YANG Dong, dyang@jlu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602000).
    [1]

    Phelps M, Sarantites D, Winn W 1970 Nucl. Phys. A 149 647Google Scholar

    [2]

    Camp D C, Meredith G L 1971 Nucl. Phys. A 166 349Google Scholar

    [3]

    McCallum G J, Coote G E 1975 Nucl. Instrum. Methods 124 309Google Scholar

    [4]

    Bambynek W, Barta T, Jedlovszky R, Christmas P, Coursol N, Debertin K, Helmer R, Nichols A, Schima F, Yoshizawa Y 1991 report IAEATECDOC-619

    [5]

    Huo J, Huo S, Yang D 2011 Nucl. Data Sheets 112 1513Google Scholar

    [6]

    Yu W, Huang X, Chen X, Lu H 2009 Nucl. Sci. Tech. 20 363

    [7]

    Dryak P, Kovar P 2008 Appl. Radiat. Isot. 66 711Google Scholar

    [8]

    Raman S, Yonezawa C, Matsue H, Iimura H, Shinohara N 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 454 389Google Scholar

    [9]

    Molnar Z R G, Belgya T 2002 INDC (NDS) 437 23 (Appendix4

    [10]

    Baglin C, Browne E, Norman E, Molnár G, Belgya T, Révay Z, Szelecsényi F 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 481 365Google Scholar

    [11]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [12]

    Emery J F, Reynolds S A, Wyatt E I, Gleason G I 1972 Nucl. Sci. Eng. 48 319Google Scholar

    [13]

    Cressy P J 1974 Nucl. Sci. Eng. 55 450Google Scholar

    [14]

    Funck E, Schötzig U, Woods M, Sephton J, Munster A, Dean J, Blanchis P, Chauvenet B 1992 Nucl. Instrum. Methods Phys. Res., Sect. A 312 334Google Scholar

    [15]

    Stewart N, Shaban A 1980 Z. Phys. A: At. Nucl. 296 165

    [16]

    Alburger D, Warburton E, Tao Z 1989 Phys. Rev. C 40 2891Google Scholar

    [17]

    Meyer R A 1990 Fizika 22 153

    [18]

    Helmer R, Van der Leun C 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 450 35Google Scholar

    [19]

    Rajput M, Mac Mahon T 1992 Nucl. Instrum. Methods Phys. Res., Sect. A 312 289Google Scholar

  • 图 1  不同文献测量与本工作56Co半衰期评价推荐结果对比

    Fig. 1.  Comparison of 56Co half-life measurements from different literature and the recommended results of this work.

    图 2  56Co γ射线绝对强度比值(本工作与ENSDF评价值对比)

    Fig. 2.  Comparison of absolute γ-ray intensity ratios for 56Co: Present work vs. ENSDF evaluated data.

    表 1  评价推荐56Co衰变数据(半衰期: 77.245(28) d)

    Table 1.  Evaluated and recommended decay data for 56Co (half-life: 77.245(28) d).

    辐射
    类型
    能量/keV 绝对强度/%
    (本工作)
    绝对强度/%
    (ENSDF)
    绝对强度/%
    (IAEA)
    半衰期 77.245(28) d 77.236(26) d 77.236(26) d
    γ1 263.41(10) 0.023(2) 0.0220(3)
    γ2 411.38(8) 0.0254(25) 0.024(3)
    γ3 486.54(11) 0.057(5) 0.0540(20)
    γ4 655.0(8) 0.043(5) 0.043(4)
    γ5 674.7(8) 0.031(5) 0.024(3)
    γ6 733.5085(23) 0.191(4) 0.191(3)
    γ7 787.7391(23) 0.310(5) 0.311(3)
    γ8 846.7638(19) 99.9417(32) 99.9399(23) 99.9399(23)
    γ9 852.78(5) 0.049(3) 0.049(3)
    γ10 896.503(7) 0.071(4) 0.073(3)
    γ11 977.363(4) 1.422(7) 1.421(6) 1.422(7)
    γ12 996.939(5) 0.113(4) 0.111(4)
    γ13 1037.8333(24) 14.06(5) 14.05(4) 14.03(5)
    γ14 1089.03(24) 0.054(7) 0.055(4)
    γ15 1140.356(7) 0.1329(30) 0.132(3)
    γ16 1159.933(8) 0.091(5) 0.094(6)
    γ17 1175.0878(22) 2.254(7) 2.252(6) 2.249(9)
    γ18 1198.78(20) 0.047(5) 0.049(5)
    γ19 1238.2736(22) 66.41(17) 66.46(12) 66.41(16)
    γ20 1272.2(6) 0.0195(10) 0.0200(7)
    γ21 1335.380(29) 0.1219(30) 0.1224(12)
    γ22 1360.196(4) 4.280(21) 4.283(12) 4.280(13)
    γ23 1442.75(8) 0.180(4) 0.180(4)
    γ24 1462.34(12) 0.0777(11) 0.074(4)
    γ25 1640.450(5) 0.0616(30) 0.0616(19)
    γ26 1771.327(3) 15.43(4) 15.41(6) 15.45(4)
    γ27 1810.726(4) 0.640(5) 0.640(3)
    γ28 1963.703(11) 0.7036(30) 0.707(4)
    γ29 2015.176(5) 3.018(15) 3.016(12) 3.017(14)
    γ30 2034.752(5) 7.749(20) 7.77(3) 7.741(13)
    γ31 2113.092(6) 0.376(4) 0.377(3)
    γ32 2212.898(3) 0.388(4) 0.388(4)
    γ33 2276.36(16) 0.119(5) 0.118(4)
    γ34 2373.7(4) 0.081(6) 0.080(4)
    γ35 2523.0(8) 0.061(5) 0.059(4)
    γ36 2598.438(4) 16.76(8) 16.97(4) 16.96(4)
    γ37 2657.4(8) 0.019(3) 0.0190(17)
    γ38 3009.559(4) 1.027(12) 1.036(13) 1.038(19)
    γ39 3201.930(11) 3.176(18) 3.209(12) 3.203(13)
    γ40 3253.402(5) 7.656(30) 7.923(21) 7.87(3)
    γ41 3272.978(6) 1.810(14) 1.8759(20) 1.855(9)
    γ42 3369.69(30) 0.0097(10) 0.0101(7)
    γ43 3451.119(4) 0.926(9) 0.949(5) 0.942(6)
    γ44 3547.93(6) 0.1939(20) 0.1955(15)
    γ45 3600.7(4) 0.0163(7) 0.0167(5)
    γ46 3611.8(8) 0.0084(4) 0.0086(3)
    γ± 511.0 40.1(8) 39(3)
    下载: 导出CSV
    Baidu
  • [1]

    Phelps M, Sarantites D, Winn W 1970 Nucl. Phys. A 149 647Google Scholar

    [2]

    Camp D C, Meredith G L 1971 Nucl. Phys. A 166 349Google Scholar

    [3]

    McCallum G J, Coote G E 1975 Nucl. Instrum. Methods 124 309Google Scholar

    [4]

    Bambynek W, Barta T, Jedlovszky R, Christmas P, Coursol N, Debertin K, Helmer R, Nichols A, Schima F, Yoshizawa Y 1991 report IAEATECDOC-619

    [5]

    Huo J, Huo S, Yang D 2011 Nucl. Data Sheets 112 1513Google Scholar

    [6]

    Yu W, Huang X, Chen X, Lu H 2009 Nucl. Sci. Tech. 20 363

    [7]

    Dryak P, Kovar P 2008 Appl. Radiat. Isot. 66 711Google Scholar

    [8]

    Raman S, Yonezawa C, Matsue H, Iimura H, Shinohara N 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 454 389Google Scholar

    [9]

    Molnar Z R G, Belgya T 2002 INDC (NDS) 437 23 (Appendix4

    [10]

    Baglin C, Browne E, Norman E, Molnár G, Belgya T, Révay Z, Szelecsényi F 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 481 365Google Scholar

    [11]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [12]

    Emery J F, Reynolds S A, Wyatt E I, Gleason G I 1972 Nucl. Sci. Eng. 48 319Google Scholar

    [13]

    Cressy P J 1974 Nucl. Sci. Eng. 55 450Google Scholar

    [14]

    Funck E, Schötzig U, Woods M, Sephton J, Munster A, Dean J, Blanchis P, Chauvenet B 1992 Nucl. Instrum. Methods Phys. Res., Sect. A 312 334Google Scholar

    [15]

    Stewart N, Shaban A 1980 Z. Phys. A: At. Nucl. 296 165

    [16]

    Alburger D, Warburton E, Tao Z 1989 Phys. Rev. C 40 2891Google Scholar

    [17]

    Meyer R A 1990 Fizika 22 153

    [18]

    Helmer R, Van der Leun C 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 450 35Google Scholar

    [19]

    Rajput M, Mac Mahon T 1992 Nucl. Instrum. Methods Phys. Res., Sect. A 312 289Google Scholar

  • [1] 魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽. 基于神经网络方法研究β衰变释放粒子的平均能量数据.  , 2025, 74(18): 182901. doi: 10.7498/aps.74.20250655
    [2] 谢金辰, 陶曦, 续瑞瑞, 田源, 邢康, 葛智刚, 牛一斐. 基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究.  , 2025, 74(8): 082501. doi: 10.7498/aps.74.20241775
    [3] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术.  , 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [4] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展.  , 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [5] 贾清刚, 张天奎, 许海波. 基于前冲康普顿电子高能伽马能谱测量系统设计.  , 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [6] 田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平. 基于放射性气体源体积的虚拟源刻度技术.  , 2016, 65(6): 062901. doi: 10.7498/aps.65.062901
    [7] 徐晓明, 苗伟, 陶琨. X射线衍射仪固有角度刻度误差对点阵参数计算精确度影响的研究.  , 2014, 63(13): 136001. doi: 10.7498/aps.63.136001
    [8] 黄建微, 王乃彦. 基于蒙特卡罗方法的NaI探测器效率刻度及其测量轫致辐射实验.  , 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [9] 李钦蕾, 范凤英, 熊纬佳, 陈安滢, 黎闫. 应用于碳同位素丰度测量的激光频率刻度系统研究.  , 2013, 62(24): 242801. doi: 10.7498/aps.62.242801
    [10] 刘宇安, 庄奕琪, 杜磊, 苏亚慧. 氮化镓基蓝光发光二极管伽马辐照的1/f噪声表征.  , 2013, 62(14): 140703. doi: 10.7498/aps.62.140703
    [11] 羊奕伟, 刘荣, 严小松. 钍俘获反应率离线伽马测量方法.  , 2013, 62(3): 032801. doi: 10.7498/aps.62.032801
    [12] 田自宁, 欧阳晓平, 曾鸣, 成智威. 积分中值定理在放射性氙样品γ谱效率刻度技术中的应用.  , 2013, 62(16): 162902. doi: 10.7498/aps.62.162902
    [13] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究.  , 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [14] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件.  , 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [15] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [16] 段晓礁, 谭志新, 兰小飞, 黄永盛, 郭士伦, 杨大为, 汤秀章, 王乃彦. 用20—1020 keV单能质子刻度CR-39固体核径迹探测器.  , 2010, 59(5): 3147-3153. doi: 10.7498/aps.59.3147
    [17] 夏良斌, 欧阳晓平, 王群书, 康克军, 何小玲, 顾牡. 掺杂有机染料的铅锡氟磷酸闪烁玻璃及其在伽马激发下的发光.  , 2009, 58(2): 882-886. doi: 10.7498/aps.58.882
    [18] 刘政威, 阳效良, 肖思国. 提高能量上转换效率的实验探讨.  , 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [19] 阮同泽, 李炳安. 层子模型中重子的半轻子衰变和高能中微子反应.  , 1977, 26(5): 397-410. doi: 10.7498/aps.26.397
    [20] 胡宁, 于敏. β—衰变理论.  , 1951, 8(3): 260-269. doi: 10.7498/aps.8.260
计量
  • 文章访问数:  388
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-09
  • 修回日期:  2025-07-23
  • 上网日期:  2025-08-12
  • 刊出日期:  2025-10-05

/

返回文章
返回
Baidu
map