搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光振镜扫描系统中多重反射的高效抑制研究

崔书洋 吴雨祥 蔡玉栋 李轩 邵晓鹏

引用本文:
Citation:

激光振镜扫描系统中多重反射的高效抑制研究

崔书洋, 吴雨祥, 蔡玉栋, 李轩, 邵晓鹏

Efficient suppression of multiple reflections in laser galvanometer scanning systems

CUI Shuyang, WU Yuxiang, CAI Yudong, LI Xuan, SHAO Xiaopeng
cstr: 32037.14.aps.74.20250716
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 目前基于激光振镜的结构光三维测量技术已经在焊装车间机器人抓取、搬运、上下料等工业场景中得到广泛应用. 然而, 在实际测量场景中存在凹陷、重叠、遮挡等复杂测量结构, 光在微面间易形成多重反射现象, 造成微面区域内的强度信息混叠, 最终导致该测量区域点云缺失. 为解决复杂结构区域测量过程中的点云缺失问题, 本文提出一种以激光振镜作为关键投射模组的双目点云传感器, 在不增加硬件的条件下实现两种不同模式的图像投射, 其中本文所提出的抗多重反射投图模式, 通过调控关键器件之间的时序配合关系, 完成了复杂结构位置的测量, 解决了多重反射干扰下的测量点云缺失问题. 最后, 在实际场景下进行多组实验, 验证所提策略的可行性. 结果表明, 在存在多重反射干扰的测量场景下, 本文所提出的抗多重反射投图模式测量黑件点云的完整性达到98.03%, 较常规测量模式提升18.98%, 有效解决了存在多重反射干扰场景内测量点云的缺失问题.
    The structured light 3D measurement technology based on laser galvanometer has been widely used in industrial scenarios such as robot grasping, handling, and loading/unloading in welding and assembly workshops. However, in actual measurement scenarios, there are complex measurement structures such as depressions, overlaps, and occlusions. Light is prone to multiple reflections between micro-faces, causing intensity information to be mixed within the micro-face area and ultimately resulting in point cloud loss in this measurement area. To address the issue of point cloud loss in complex structure areas in the measurement process and ensure the accuracy of the measurement information provided by vision, a binocular point cloud sensor with a laser galvanometer as the key projection module is proposed in this work. Without adding hardware, it realizes two different image projection modes to deal with complex measurement situations within the scene. Among them, the anti-multiple reflection projection mode proposed in this work, by regulating the timing coordination relationship between key components, completes the measurement of complex structure positions and solves the problem of point cloud loss caused by multiple reflection interference. Finally, multiple experiments are conducted in actual scenarios to verify the feasibility of the proposed strategy. The experimental results show that in measurement scenarios with multiple reflection interference, the integrity of the black part point cloud measured by the anti-multiple reflection projection mode proposed in this work reaches 98.03%, which is 18.98% higher than the traditional measurement mode. It effectively solves the problem of point cloud loss in measurement scenarios with multiple reflection interference. Visual measurements ensure the accuracy and completeness of the information obtained. The six-axis compensation values determined by the robot for each part’s pose state during teaching become more precise. This ensures that the previously taught robot trajectory can be accurately reused for subsequent poses, thereby reducing the time needed for manual robot debugging and enhancing production efficiency.
      通信作者: 李轩, lixuan@xidian.edu.cn
    • 基金项目: 浙江省自然科学基金杭州区域创新发展联合基金(批准号: LHZSZ25F010002)资助的课题.
      Corresponding author: LI Xuan, lixuan@xidian.edu.cn
    • Funds: Project supported by the Hangzhou Regional Innovation and Development Joint Fund of Natural Science Foundation of Zhejiang Province, China (Grant No. LHZSZ25F010002).
    [1]

    Ramadan M, Youssef A, Ayyad A 2024 Sci. Rep. 14 30742Google Scholar

    [2]

    Woodham R 1980 Opt. Eng. 19 191139Google Scholar

    [3]

    Li B Y, RenW Q, Fu D P, Tao D C, Feng D, Zeng W J, Wang Z Y 2018 IEEE Trans. Image Process. 28 492Google Scholar

    [4]

    Gao F, Schaaf B C, Strahler H A, Roesch A, Lucht W, Dickinson R 2005 J. Geophys. Res. Atmos. 110 312Google Scholar

    [5]

    Carsten S, Adrian S, Frank W 2009 VDI Ber. 206 89

    [6]

    Nayar K S, Krishnan G, Grossberg D M 2006 ACM Trans. Graph. 25 935Google Scholar

    [7]

    O'Toole M, Mather J 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 298Google Scholar

    [8]

    赵慧洁, 李宇曦, 姜宏志, 李旭东 2023 激光与光电子学进展 60 081108Google Scholar

    Zhao H J, Li Y X, Jiang H Z, Li X D 2023 Laser Optoelectron. Prog. 60 081108Google Scholar

    [9]

    Zhang T, Lei P, Huang Y, Rong Y M 2025 Measurement 244 116508Google Scholar

    [10]

    Seo Y B, Joo K N, Ghim Y S, Rhee H G 2021 Meas. Sci. Technol. 32 045201Google Scholar

    [11]

    张启灿, 吴周杰 2020 红外与激光工程 49 0303004Google Scholar

    Zhang Q C, Wu Z J 2020 Infrared Laser Eng. 49 0303004Google Scholar

    [12]

    Tianyu L, Fajie D, Changwen L 2024 Opt. Express 32 457Google Scholar

    [13]

    Li J, Wang L, Wan Y 2024 Opt. Lasers Eng. 18 108436Google Scholar

    [14]

    张芝贤, 程继坤, 武旭娟 2017 微型机与应用 36 80Google Scholar

    Zhang Z X, Cheng J K, Wu X J 2017 Microcomput. Appl. 36 80Google Scholar

    [15]

    Pattnayak C B, Mohapatra S 2025 Desalination 604 118703Google Scholar

    [16]

    Jia J X, Xie F, Bao S T 2025 Opt. Fiber Technol. 90 104115Google Scholar

    [17]

    Shi J W, Li C Y, Cao K, Wang Y C, Zhang X, Zhou J Y, Zhao F P, Yang F, Chen W B 2024 Opt. Express 32 41004Google Scholar

    [18]

    Liu S, Chen J, Sun M, Zhao L L, Wei X 2020 IEEE Access 8 11754Google Scholar

    [19]

    Qian J, Dang S P, Zhou X, Dan D, Wang Z J, Zhao T Y, Liang Y S, Yao B L, Lei M 2020 Acta Phys. Sin. 69 128701 (in Chinese) [千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭 2020 69 128701]Google Scholar

    Qian J, Dang S P, Zhou X, Dan D, Wang Z J, Zhao T Y, Liang Y S, Yao B L, Lei M 2020 Acta Phys. Sin. 69 128701 (in Chinese)Google Scholar

    [20]

    Abdel-Rehim O A, Davidson J L, Marsh L A, O’Toole M D, Peyton A J 2016 IEEE Sens. J. 16 3775Google Scholar

  • 图 1  激光振镜投射模组

    Fig. 1.  Laser galvanometer projection module

    图 2  激光器、振镜、相机三者时序调控图

    Fig. 2.  Timing control diagram of laser, galvanometer and camera

    图 3  多重反射现象

    Fig. 3.  Phenomenon of multiple reflections

    图 4  标定流程

    Fig. 4.  Calibration process

    图 5  钣金件、黑件表面处理结果 (a)—(d) 钣金件表面光条处理、前景图和光条中心提取结果; (e)—(h) 黑件表面光条处理、前景图和光条中心提取结果

    Fig. 5.  Surface treatment results of sheet metal parts and black parts: (a)—(d) Surface stripe treatment, foreground image and stripe center extraction results of sheet metal parts; (e)—(h) surface stripe treatment, foreground image and stripe center extraction results of black parts.

    图 6  同名点搜索原理

    Fig. 6.  Principle of homonymous point search

    图 7  激光振镜传感器

    Fig. 7.  Laser galvanometer sensor

    图 8  激光振镜传感器标定采图

    Fig. 8.  Calibration image acquisition for laser galvanometer sensor

    图 9  测量环境

    Fig. 9.  Measurement environment

    图 10  测量环境搭建情况

    Fig. 10.  Measurement environment setup situation

    图 11  边缘点提取异常情况 (a) 左相机提取结果; (b) 右相机提取结果

    Fig. 11.  Edge point extraction abnormal conditions: (a) Extraction result of the left camera; (b) extraction result of the right camera

    图 12  受多重反射光干扰造成的点云缺失现象

    Fig. 12.  Phenomenon of point cloud loss caused by interference from multiple reflected lights.

    图 13  点云完整性改善效果

    Fig. 13.  Effect of improving the integrity of point clouds

    图 14  真实测量场景及待测件摆放情况

    Fig. 14.  Actual measurement scene and the placement of the object to be measured.

    图 15  两种策略重建特征点云效果对比 (a) 常规策略; (b) 抗多重反射策略

    Fig. 15.  Comparison of the effects of two strategies for reconstructing feature point clouds: (a) Conventional strategy; (b) anti-multiple reflection strategy

    表 1  标定结果

    Table 1.  Calibration results

    左相机 右相机
    相机内参 $ \left(\begin{array}{ccc}1685.17&0&1022.08\\0&1684.51&764.886\\ 0&0&1\end{array}\right) $ $ \left(\begin{array}{ccc}1689.73&0&1036.15\\ 0&1689.53&763.744\\ 0&0&1\end{array}\right) $
    平均重投影误差 0.03 pixel 0.02 pixel
    立体标定结果 $ \left(\begin{array}{cccc}0.93517&0.00656701&0.354139&-832.458\\ -0.00290955&0.999937&-0.0108592&2.80458\\ -0.354188&0.0912484&0.93513&155.423\\ 0&0&0&1\end{array}\right) $
    下载: 导出CSV

    表 2  绝对测量精度水平

    Table 2.  Level of absolute measurement accuracy

    传感器 测量方式 球心距/mm 左球直径/mm 右球直径/mm
    市面成熟
    传感器
    909.53 101.71 101.66
    本文搭建
    传感器
    常规策略 909.70 101.44 101.70
    本文搭建
    传感器
    抗多重
    反射策略
    909.46 101.84 100.96
    下载: 导出CSV

    表 3  重建特征表面点云数量和完整性情况

    Table 3.  The quantity and integrity of the point cloud of the reconstructed feature surface

    实验
    组数
    常规策略重
    建点云数量
    完整性/% 抗多重反射策
    略重建点云数量
    完整性/%
    1 2815 79.05 3491 98.03
    2 2833 79.56 3516 98.74
    3 2798 78.57 3482 97.78
    下载: 导出CSV
    Baidu
  • [1]

    Ramadan M, Youssef A, Ayyad A 2024 Sci. Rep. 14 30742Google Scholar

    [2]

    Woodham R 1980 Opt. Eng. 19 191139Google Scholar

    [3]

    Li B Y, RenW Q, Fu D P, Tao D C, Feng D, Zeng W J, Wang Z Y 2018 IEEE Trans. Image Process. 28 492Google Scholar

    [4]

    Gao F, Schaaf B C, Strahler H A, Roesch A, Lucht W, Dickinson R 2005 J. Geophys. Res. Atmos. 110 312Google Scholar

    [5]

    Carsten S, Adrian S, Frank W 2009 VDI Ber. 206 89

    [6]

    Nayar K S, Krishnan G, Grossberg D M 2006 ACM Trans. Graph. 25 935Google Scholar

    [7]

    O'Toole M, Mather J 2016 IEEE Trans. Pattern Anal. Mach. Intell. 38 298Google Scholar

    [8]

    赵慧洁, 李宇曦, 姜宏志, 李旭东 2023 激光与光电子学进展 60 081108Google Scholar

    Zhao H J, Li Y X, Jiang H Z, Li X D 2023 Laser Optoelectron. Prog. 60 081108Google Scholar

    [9]

    Zhang T, Lei P, Huang Y, Rong Y M 2025 Measurement 244 116508Google Scholar

    [10]

    Seo Y B, Joo K N, Ghim Y S, Rhee H G 2021 Meas. Sci. Technol. 32 045201Google Scholar

    [11]

    张启灿, 吴周杰 2020 红外与激光工程 49 0303004Google Scholar

    Zhang Q C, Wu Z J 2020 Infrared Laser Eng. 49 0303004Google Scholar

    [12]

    Tianyu L, Fajie D, Changwen L 2024 Opt. Express 32 457Google Scholar

    [13]

    Li J, Wang L, Wan Y 2024 Opt. Lasers Eng. 18 108436Google Scholar

    [14]

    张芝贤, 程继坤, 武旭娟 2017 微型机与应用 36 80Google Scholar

    Zhang Z X, Cheng J K, Wu X J 2017 Microcomput. Appl. 36 80Google Scholar

    [15]

    Pattnayak C B, Mohapatra S 2025 Desalination 604 118703Google Scholar

    [16]

    Jia J X, Xie F, Bao S T 2025 Opt. Fiber Technol. 90 104115Google Scholar

    [17]

    Shi J W, Li C Y, Cao K, Wang Y C, Zhang X, Zhou J Y, Zhao F P, Yang F, Chen W B 2024 Opt. Express 32 41004Google Scholar

    [18]

    Liu S, Chen J, Sun M, Zhao L L, Wei X 2020 IEEE Access 8 11754Google Scholar

    [19]

    Qian J, Dang S P, Zhou X, Dan D, Wang Z J, Zhao T Y, Liang Y S, Yao B L, Lei M 2020 Acta Phys. Sin. 69 128701 (in Chinese) [千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭 2020 69 128701]Google Scholar

    Qian J, Dang S P, Zhou X, Dan D, Wang Z J, Zhao T Y, Liang Y S, Yao B L, Lei M 2020 Acta Phys. Sin. 69 128701 (in Chinese)Google Scholar

    [20]

    Abdel-Rehim O A, Davidson J L, Marsh L A, O’Toole M D, Peyton A J 2016 IEEE Sens. J. 16 3775Google Scholar

  • [1] 赵时雨, 高芬, 何俞谆. 小孔点衍射干涉仪中衍射小孔的可视对准技术.  , 2025, 74(7): 074204. doi: 10.7498/aps.74.20241180
    [2] 沈杨翊, 戴玉, 孔新新, 赵思泽鹏, 张文喜. 收发望远镜参数对光纤激光测振仪测量分辨力的影响.  , 2025, 74(1): 014206. doi: 10.7498/aps.74.20240682
    [3] 佘彦超, 徐名琪, 冯雯雅, 刘嘉琦, 杨红. 量子点-双腔磁光机械系统中的磁振子双稳态.  , 2025, 74(12): 124203. doi: 10.7498/aps.74.20250172
    [4] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究.  , 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [5] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [6] 王学彬, 徐灿, 郑志刚. 多重耦合振子系统的同步动力学.  , 2020, 69(17): 170501. doi: 10.7498/aps.69.20200394
    [7] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法.  , 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [8] 陈家祯, 郑子华, 叶锋, 连桂仁, 许力. 三维物体多重菲涅耳计算全息水印与无干扰可控重建方法.  , 2017, 66(23): 234202. doi: 10.7498/aps.66.234202
    [9] 张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤. 可激发气体振动弛豫时间的两频点声测量重建算法.  , 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [10] 王岩, 王飞, 王挺峰, 谢京江. 基于自适应阈值的阵列激光三维点云配准.  , 2016, 65(24): 249501. doi: 10.7498/aps.65.249501
    [11] 牛海莎, 牛燕雄, 刘宁, 刘雯文, 王彩丽. 外腔镜非线性运动对激光回馈应力测量系统精度的影响及修正.  , 2015, 64(8): 084208. doi: 10.7498/aps.64.084208
    [12] 赵顾颢, 赵尚弘, 幺周石, 郝晨露, 蒙文, 王翔, 朱子行, 刘丰. 偏振无关的旋光双反射结构的实验研究.  , 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [13] 徐攀, 胡正良, 马明祥, 姜暖, 胡永明. 光频率调制法测量动态光栅瞬态反射谱特性.  , 2012, 61(17): 174208. doi: 10.7498/aps.61.174208
    [14] 关庆丰, 吕鹏, 王孝东, 万明珍, 顾倩倩, 陈波. 质子辐照下Mo/Si多层膜反射镜的微观结构状态.  , 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [15] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. Doppler振镜正弦调制多光束激光外差二次谐波测量角度的方法.  , 2012, 61(1): 010601. doi: 10.7498/aps.61.010601
    [16] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法.  , 2012, 61(4): 044207. doi: 10.7498/aps.61.044207
    [17] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平. 反射镜双程放大对类氖锗软X射线激光的输出影响研究.  , 2011, 60(10): 104207. doi: 10.7498/aps.60.104207
    [18] 李俊昌, 樊则宾, Tankam Patrice, 宋庆和, Picart Pascal. 无零级衍射干扰的彩色数字全息研究.  , 2011, 60(3): 034204. doi: 10.7498/aps.60.034204
    [19] 李文平, 张雅鑫, 刘盛纲, 刘大刚. 特殊三反射镜太赫兹波段准光腔回旋管的动力学理论.  , 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
    [20] 黄文忠, 李英骏, 谷渝秋, 张 杰, 尤永禄, 淳于书泰, 何颍玲, 雷安乐, 陈正林, 马月英, 金春水. 中心波长为28.5nm多层膜镜反射率测量.  , 2003, 52(4): 809-812. doi: 10.7498/aps.52.809
计量
  • 文章访问数:  240
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-07-08
  • 上网日期:  2025-08-16

/

返回文章
返回
Baidu
map