搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稳频激光的超窄线宽π相移光纤布拉格光栅应变测量

于波 银振强 丁伟杰 刘伟新 李静

引用本文:
Citation:

基于稳频激光的超窄线宽π相移光纤布拉格光栅应变测量

于波, 银振强, 丁伟杰, 刘伟新, 李静

Strain measurement of ultra-narrow linewidth π-phase-shifted fiber Bragg grating based on frequency-stabilized laser

YU Bo, YIN Zhenqiang, DING Weijie, LIU Weixin, LI Jing
cstr: 32037.14.aps.74.20250701
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超窄线宽π相移光纤布拉格光栅在光纤传感领域发挥着重要的作用, 但是这种超窄线宽π相移光纤布拉格光栅对输入光强度非常敏感, 输入光在光栅内部产生光热效应会引起频率移动, 降低了光栅的测量精度, 同时激光器自身的频率漂移也会增大测量误差. 本文提出使用超窄线宽π相移光纤布拉格光栅进行高精度应变测量的方法, 采用单光子调制技术锁定激光频率到38 MHz超窄线宽π相移光纤布拉格光栅, 同时消除了光栅内部光热效应和激光频率起伏对应变测量的影响, 对于0—30 με范围的外部应变实现了测量精度为0.05 με的高精度测量, 该方法在航空航天、土木工程、能源工程等领域具有重要应用价值.
    The fiber Bragg grating has the characteristics of anti-electromagnetic interference, electrically passive operation, multi-point sensing, corrosion resistance, and compact size. An ultra-narrow linewidth transmission peak can be formed by introducing a π phase shift at the center of uniform fiber Bragg grating. But this π phase-shifted fiber Bragg grating (PSFBG) with an ultra-narrow linewidth is very sensitive to the input optical intensity. The photothermal effect generated by the input light inside the grating will cause the frequency shift, which will degrade the measurement precision of grating. At the same time, the frequency drift of the laser itself will also increase the measurement error. In this paper, a high-precision strain measurement method is proposed by using the PSFBG with an ultra-narrow linewidth based on the frequency-stabilized laser. The incident laser is attenuated to a single-photon level to eliminate the photothermal effect in the PSFBG. The laser frequency is stabilized to the PSFBG with an ultra-narrow linewidth of 38 MHz by using the single-photon modulation technology. The influence of low-frequency flicker noise is eliminated through 9-kHz high-frequency modulation. The filter bandwidth of lock-in amplifier is 312.5 Hz with the integration time and filter slope of 300 μs and 18 dB, respectively. The signal-to-noise ratio of error signal from the lock-in amplifier is 34. By tuning the resonant cavity length of the laser with the error signal, the output laser frequency is stabilized to the Bragg frequency of the PSFBG with an ultra-narrow linewidth of 38 MHz. The laser frequency fluctuation is limited to 4 MHz within 1000 s. The response sensitivity of Bragg wavelength to external strain in a range of 0 to 30 με is 1.2 pm/με, with a standard error of 0.023 pm/με, and the linear fitting correlation coefficient is R2 = 0.997. Due to the random drift of Bragg wavelength, caused by the environment temperature fluctuations, the corresponding strain measurement precision is 0.05 με. The high-precision strain measurement by using the PSFBG with an ultra-narrow linewidth based on the frequency-stabilized laser is achieved, which will play an important role in the field of aerospace, civil engineering, energy engineering, etc.
      通信作者: 于波, yb@xztu.edu.cn
    • 基金项目: 山西省基础研究计划(批准号: 202403021211084)和忻州市科技计划项目(批准号: 20240509)资助的课题.
      Corresponding author: YU Bo, yb@xztu.edu.cn
    • Funds: Project supported by the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021211084) and the Science & Technology Program of Xinzhou City, China (Grant No. 20240509).
    [1]

    Sun Q Q, Zhang M Z, Zhao S S, Ji L T, Su J, Xu J, Yang B, Wu C 2025 Opt. Lasers Eng. 194 109147Google Scholar

    [2]

    Kok S P, Go Y L, Wang X, Wong M L D 2024 IEEE Sensors J. 24 29485Google Scholar

    [3]

    Abdulraheem M I, Xiong Y, Zhang W, Chen H, Zhang H, Hu J 2024 Int. J. Precis. Eng. Manuf. 25 1499Google Scholar

    [4]

    Xu S Y, Li X Z, Wang T Y, Wang X J, Liu H 2023 Opt. Eng. 62 010902Google Scholar

    [5]

    Hu X Y, Xu Y, Zhang H X, Xie J H, Niu D Q, Zhao Z, Qu X 2023 IEEE Sensors J. 23 11374Google Scholar

    [6]

    Zhai H Z, Wu Q, Xiong K, Wang R 2019 IEEE Photon. Technol. Lett. 31 1335Google Scholar

    [7]

    Pashaie R, Vahedi M 2022 Opt. Quant. Electron. 54 85Google Scholar

    [8]

    Xiang R, Chen C X, Kong B, Hong Q S, Lu L 2022 Optics and Photonics J. 12 269Google Scholar

    [9]

    Liu T, Li Y W, Dai X Y, Gan W B, Wang X S, Dai S X 2023 J. Lightw. Technol. 41 5169Google Scholar

    [10]

    Cheng H, Wang L, Wang J 2023 Opt. Fiber Technol. 79 103363Google Scholar

    [11]

    Tian T, Zhou X, Wang S H, Luo Y, Li X G, He N H, Ma Y L, Liu W F, Shi R B, Ma G N 2022 Energies 15 5849Google Scholar

    [12]

    Zhang F, Buchfellner F, Hu W B, Ao W X, Bian Q, Roths J, Yang M H 2025 Photon. Sens. 15 250204Google Scholar

    [13]

    Daxini S, Aydin D, Giron A, Barnes J, Gu X J, Loock H P 2025 Opt. Express 33 6039Google Scholar

    [14]

    Nadeem M D, Raghuwanshi S K, Kumar S 2022 IEEE Sensors J. 22 7463Google Scholar

    [15]

    Ji L T, Li G, Zhang C, Su J, Wu C 2021 IEEE Sensors J. 21 27482Google Scholar

    [16]

    Srivastava D, Das B 2020 Sens. Actuators A Phys. 315 112215Google Scholar

    [17]

    Miao S J, Zhang W T, Song Y, Huang W Z 2020 Opt. Express 28 12699Google Scholar

    [18]

    Man W Q, Zhang C Y, Peng J, He Q P 2025 J. Optoelectron. Adv. Mater. 27 107

    [19]

    Chow J H, Sheard B S, Mcclelland D E, Gray M B, Littler I C M 2005 Opt. Lett. 30 708Google Scholar

    [20]

    Painchaud Y, Aubé M, Brochu G, Picard M J 2010 Proc. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Paper BTuC3

    [21]

    Ding M, Chen D J, Fang Z J, Wang D, Zhang X, Wei F, Yang F, Ying K, Cai H W 2016 Opt. Express 24 25370Google Scholar

    [22]

    于波, 景明勇, 胡建勇, 张国峰, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 080604Google Scholar

    Yu B, Jing M Y, Hu J Y, Zhang G F, Xiao L T, Jia S T 2016 Laser Optoelectron. Prog. 53 080604Google Scholar

  • 图 1  基于稳频激光的超窄线宽π相移光纤布拉格光栅应变测量实验装置图(虚线代表光信号, 实线代表电信号). Iso, 隔离器; Att, 衰减器; PSFBG, π相移光纤布拉格光栅; PZT, 压电换能器; SPD, 单光子探测器; TEC, 温控器; +, 加法器; LIA, 锁相放大器; FG, 信号发生器; HVA, 高压放大器

    Fig. 1.  Experimental setup for strain measurement by using π-phase-shifted fiber Bragg grating with an ultra-narrow linewidth based on frequency-stabilized laser (dashed lines for the light signal, solid lines for the electrical signal). Iso, isolator; Att, attenuator; PSFBG, π-phase-shifted fiber Bragg grating; PZT, piezoelectric transducer; SPD, single-photon detector; TEC, temperature controller; +, adder; LIA, lock-in amplifier; FG, function generator; HVA, high-voltage amplifier.

    图 2  (a) π相移光纤布拉格光栅透射光谱; (b) 慢轴透射峰

    Fig. 2.  (a) The π-phase-shifted fiber Bragg grating transmission spectrum; (b) transmission peak for slow axis.

    图 3  激光频率未锁定与锁定的测量结果, 插图为误差信号

    Fig. 3.  Measurement results when laser frequency is unlocked and locked, and inset is error signal.

    图 4  布拉格波长随外部应力变化的测量结果

    Fig. 4.  Measurement results of Bragg wavelength variation with external strain.

    Baidu
  • [1]

    Sun Q Q, Zhang M Z, Zhao S S, Ji L T, Su J, Xu J, Yang B, Wu C 2025 Opt. Lasers Eng. 194 109147Google Scholar

    [2]

    Kok S P, Go Y L, Wang X, Wong M L D 2024 IEEE Sensors J. 24 29485Google Scholar

    [3]

    Abdulraheem M I, Xiong Y, Zhang W, Chen H, Zhang H, Hu J 2024 Int. J. Precis. Eng. Manuf. 25 1499Google Scholar

    [4]

    Xu S Y, Li X Z, Wang T Y, Wang X J, Liu H 2023 Opt. Eng. 62 010902Google Scholar

    [5]

    Hu X Y, Xu Y, Zhang H X, Xie J H, Niu D Q, Zhao Z, Qu X 2023 IEEE Sensors J. 23 11374Google Scholar

    [6]

    Zhai H Z, Wu Q, Xiong K, Wang R 2019 IEEE Photon. Technol. Lett. 31 1335Google Scholar

    [7]

    Pashaie R, Vahedi M 2022 Opt. Quant. Electron. 54 85Google Scholar

    [8]

    Xiang R, Chen C X, Kong B, Hong Q S, Lu L 2022 Optics and Photonics J. 12 269Google Scholar

    [9]

    Liu T, Li Y W, Dai X Y, Gan W B, Wang X S, Dai S X 2023 J. Lightw. Technol. 41 5169Google Scholar

    [10]

    Cheng H, Wang L, Wang J 2023 Opt. Fiber Technol. 79 103363Google Scholar

    [11]

    Tian T, Zhou X, Wang S H, Luo Y, Li X G, He N H, Ma Y L, Liu W F, Shi R B, Ma G N 2022 Energies 15 5849Google Scholar

    [12]

    Zhang F, Buchfellner F, Hu W B, Ao W X, Bian Q, Roths J, Yang M H 2025 Photon. Sens. 15 250204Google Scholar

    [13]

    Daxini S, Aydin D, Giron A, Barnes J, Gu X J, Loock H P 2025 Opt. Express 33 6039Google Scholar

    [14]

    Nadeem M D, Raghuwanshi S K, Kumar S 2022 IEEE Sensors J. 22 7463Google Scholar

    [15]

    Ji L T, Li G, Zhang C, Su J, Wu C 2021 IEEE Sensors J. 21 27482Google Scholar

    [16]

    Srivastava D, Das B 2020 Sens. Actuators A Phys. 315 112215Google Scholar

    [17]

    Miao S J, Zhang W T, Song Y, Huang W Z 2020 Opt. Express 28 12699Google Scholar

    [18]

    Man W Q, Zhang C Y, Peng J, He Q P 2025 J. Optoelectron. Adv. Mater. 27 107

    [19]

    Chow J H, Sheard B S, Mcclelland D E, Gray M B, Littler I C M 2005 Opt. Lett. 30 708Google Scholar

    [20]

    Painchaud Y, Aubé M, Brochu G, Picard M J 2010 Proc. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Paper BTuC3

    [21]

    Ding M, Chen D J, Fang Z J, Wang D, Zhang X, Wei F, Yang F, Ying K, Cai H W 2016 Opt. Express 24 25370Google Scholar

    [22]

    于波, 景明勇, 胡建勇, 张国峰, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 080604Google Scholar

    Yu B, Jing M Y, Hu J Y, Zhang G F, Xiao L T, Jia S T 2016 Laser Optoelectron. Prog. 53 080604Google Scholar

  • [1] 关建飞, 俞潇, 丁冠天, 陈陶, 陆云清. 金属光栅覆盖分布式布拉格反射镜结构的透射增强效应.  , 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究.  , 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [3] 李科, 董明利, 袁配, 鹿利单, 孙广开, 祝连庆. 基于阵列波导光栅的光纤布拉格光栅解调技术综述.  , 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [4] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才. 光纤环形谐振腔的频率锁定及其特性.  , 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [5] 王善江, 苏丹, 张彤. 表面等离激元光热效应研究进展.  , 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [6] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量.  , 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [7] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究.  , 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [8] 刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将. 光纤布拉格光栅型全光纤声光调制器的特性研究.  , 2013, 62(3): 034208. doi: 10.7498/aps.62.034208
    [9] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响.  , 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [10] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳.  , 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [11] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂. 单光子调制锁定Fabry-Perot腔.  , 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [12] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定.  , 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [13] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究.  , 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [14] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪.  , 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [15] 吴犇, 张会, 朱良栋, 郭澎, 王倩, 高润梅, 常胜江. 基于布拉格光纤的磁场调制液晶太赫兹开关.  , 2009, 58(3): 1838-1843. doi: 10.7498/aps.58.1838
    [16] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性.  , 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [17] 邵惠国, 赵 霁, 吴佳文, 周建英. 有限宽度布拉格原子层中光子囚禁与移动孤子的研究.  , 2005, 54(3): 1420-1425. doi: 10.7498/aps.54.1420
    [18] 沈全洪, 徐端颐, 齐国生, 胡 恒, 刘 嵘. 孔径型超分辨近场结构光盘的掩膜热效应分析.  , 2005, 54(10): 4718-4722. doi: 10.7498/aps.54.4718
    [19] 吕昌贵, 崔一平, 王著元, 恽斌峰. 光纤布拉格光栅法布里-珀罗腔纵模特性研究.  , 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
    [20] 赵一广. 条形DH半导体激光器高频调制光输出的频率锁定、准周期、分岔和混沌.  , 1991, 40(5): 731-738. doi: 10.7498/aps.40.731
计量
  • 文章访问数:  483
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-30
  • 修回日期:  2025-07-11
  • 上网日期:  2025-08-11

/

返回文章
返回
Baidu
map