搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元金属-半导体复合电极的界面声子热输运特性

郑子超 李志康 桑丽霞

引用本文:
Citation:

等离激元金属-半导体复合电极的界面声子热输运特性

郑子超, 李志康, 桑丽霞

Interfacial phonon thermal transport properties of plasmonic-metal-semiconductor composite electrodes

ZHENG Zichao, LI Zhikang, SANG Lixia
cstr: 32037.14.aps.74.20250683
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了优选等离激元太阳能分解水体系中金属和半导体的复合光电极, 本文采用非平衡分子动力学方法计算了等离激元金属Cu, Ag和Au与半导体TiO2, ZnO和MoS2的复合电极在不同温度下的界面热导, 并通过计算声子态密度和声子参与率研究了不同频率的声子与界面热导的关系. 结果表明, 随温度的增加, 不同复合电极的界面热导增加. 在相同的半导体TiO2上, Cu-TiO2和Ag-TiO2界面热导均高于Au-TiO2, Cu-TiO2复合电极的界面热导在800 K时可以达到973.56 MW·m–2·K–1. 对于等离激元金属Au, 相对MoS2和TiO2, 其与ZnO复合的界面导热更高; 而对于等离激元金属Cu, Cu-TiO2的界面热导高于预测的Cu-ZnO, 这取决于更多处于核心热输运频段的低频声子参与界面热输运.
    Plasmonic solar water splitting is produced on the composite electrode with plasmonic metal nanoparticles loaded on semiconductor, where the localized heating generated by relaxation of the metal’s localized surface plasmon resonance (LSPR) under light excitation enhances hydrogen production efficiency. To optimize composite photoanodes for photoelectrochemical water splitting system, the non-equilibrium molecular dynamics simulations are conducted to obtain the interfacial thermal conductivity between plasmonic metals (Cu, Ag, Au) and semiconductors (TiO2, ZnO, MoS2) at varying temperatures. The relationship between interfacial thermal conductivity and phonons at different frequencies is investigated via vibrational density of states which is calculated from the velocity autocorrelation functions and subsequent phonon participation ratio. The results indicate that as he temperature increases, the interfacial thermal conductivity of all composite electrode configurations is enhanced. When Cu and Ag are combined with TiO2 into Cu-TiO2 and Ag-TiO2, respectively, the thermal transport performances of Cu-TiO2 and Ag-TiO2 are superior to Au-TiO2, and the interfacial thermal conductivity of Cu-TiO2 reaches 973.56 MW·m–2·K–1 at 800 K. With Au as the fixed plasmonic component, Au-ZnO shows that its interfacial thermal conductivity reaches 324.44 MW·m–2·K–1 at 800 K, which is higher than those of Au-MoS2 and Au-TiO2. Based on the obtained interfacial thermal conductivity of different composite photoanodes, it is predicted that Cu-ZnO is the optimal composite, but its interfacial thermal conductivity is 547.69 MW·m–2·K–1 at 800 K, second only to Cu-TiO2. The analysis of vibrational density of states and phonon participation ratio shows that the low-frequency region (0—10 THz) is the main region for thermal transport, and both interfaces exhibit a high phonon participation ratio range of 0.7—0.8. However, the Cu-TiO2 possesses much higher vibrational density of states than Cu-ZnO within this critical band. Although Cu-ZnO exhibits a higher phonon participation ratio range in the high-frequency range, its lower overall interfacial thermal conductivity is attributed to the minimal contribution of high-frequency phonons to interfacial thermal conductance. The findings provide optimization strategies based on interfacial thermal transport mechanisms for constructing efficient photoanodes for solar water splitting.
      通信作者: 桑丽霞, sanglixia@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52176174)资助的课题.
      Corresponding author: SANG Lixia, sanglixia@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176174).
    [1]

    Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358Google Scholar

    [2]

    Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L 2021 Catal. Today 380 156Google Scholar

    [3]

    Ghosh U, Pal A, Pal T 2022 Adv. Mater. Interfaces 9 2200465Google Scholar

    [4]

    Lou Y B, Zhang Y K, Cheng L, Chen J X, Zhao Y X 2018 ChemSusChem 11 1505Google Scholar

    [5]

    Liu L D, Zhang H F, Xing S, Zhang Y, Li S G, Wei C, Peng F, Liu X Y 2023 Adv. Sci. 10 2207342Google Scholar

    [6]

    Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666Google Scholar

    [7]

    Zhao W R, Ai Z Y, Dai J S, Zhang M 2014 PLoS ONE 9 e103671Google Scholar

    [8]

    Zhai H S, Liu X L, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Wang P, Huang B B 2020 Chin. J. Catal. 41 1613Google Scholar

    [9]

    Li Y Y, Wu S, Zheng J W, Peng Y K, Prabhakaran D, Taylor R A, Tsang S C E 2020 Mater. Today 41 34Google Scholar

    [10]

    桑丽霞, 马梦楠 2023 高等学校化学学报 44 20220768Google Scholar

    Sang L X, Ma M N 2023 Chem. J. Chin. Uiv. 44 20220768Google Scholar

    [11]

    桑丽霞, 李志康 2024 73 103105Google Scholar

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105Google Scholar

    [12]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [13]

    Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energy 47 23570Google Scholar

    [14]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [15]

    Lu Z X, Wang Y, Ruan X L 2016 Phys. Rev. B 93 064302Google Scholar

    [16]

    Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768Google Scholar

    [17]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [18]

    Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105Google Scholar

    [19]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [20]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [21]

    Loh G C, Teo E H T, Tay B K 2012 Diamond Relat. Mater. 23 88Google Scholar

    [22]

    Robert S, Leonid Z, Pamela N 2007 Int. J. Heat Mass Transfer 50 3977Google Scholar

    [23]

    Samy M, Konstantinos T 2012 Phys. Rev. B 86 094303Google Scholar

    [24]

    Tang Z Y, Wang X X, He C Y, Li J, Chen M X, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320Google Scholar

    [25]

    Li Z D, Han L W, Ouyang T, Cao J X, Yao Y S, Wei X L 2025 Phys. Rev. Mater. 9 033804Google Scholar

    [26]

    Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640Google Scholar

    [27]

    Wang W D, Pi Z L, Lei F, Lu Y 2016 AIP Adv. 6 035111Google Scholar

    [28]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [29]

    Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472Google Scholar

    [30]

    Lin G, Jiang L, Ji P F 2023 Phys. Chem. Chem. Phys. 25 19853Google Scholar

    [31]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Res. 9 2372Google Scholar

    [32]

    Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113Google Scholar

    [33]

    Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796Google Scholar

    [34]

    Sheng Y F, Hu Y, Fan Z Y, Bao H 2022 Phys. Rev. B 105 075301Google Scholar

    [35]

    刘东静, 王韶铭, 杨平 2021 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [36]

    Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250Google Scholar

    [37]

    Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401Google Scholar

  • 图 1  不同复合电极的原子结构 (a) Cu-TiO2; (b) Ag-TiO2; (c) Au-ZnO; (d) Au-MoS2

    Fig. 1.  Atomic structures of different composite electrodes: (a) Cu-TiO2; (b) Ag-TiO2; (c) Au-ZnO; (d) Au-MoS2.

    图 2  不同温度下Au-TiO2[11], Ag-TiO2和Cu-TiO2复合电极的界面热导

    Fig. 2.  Interfacial thermal conductivity of Au-TiO2[11], Ag-TiO2 and Cu-TiO2 composite electrodes with different temperatures.

    图 3  Cu-TiO2复合电极各组分在不同温度下的声子态密度 (a) TiO2; (b) Cu

    Fig. 3.  VDOS of each component in Cu-TiO2 composite electrode at different temperatures: (a) TiO2; (b) Cu.

    图 4  Ag-TiO2复合电极各组分在不同温度下的声子态密度 (a) TiO2; (b) Ag

    Fig. 4.  VDOS of each component in Ag-TiO2 composite electrode at different temperatures: (a) TiO2; (b) Ag.

    图 5  不同温度下各组分的声子态密度 (a) 300 K; (b) 400 K; (c) 500 K; (d) 600 K; (e) 700 K; (f) 800 K

    Fig. 5.  Phonon density of states for each component at different temperatures: (a) 300 K; (b) 400 K; (c) 500 K; (d) 600 K; (e) 700 K; (f) 800 K.

    图 6  不同温度下Au-TiO2[11], Au-MoS2和Au-ZnO复合电极的界面热导

    Fig. 6.  Interfacial thermal conductivity of Au-TiO2[11], Au-MoS2 and Au-ZnO composite electrodes at different temperatures.

    图 7  不同温度时Au-MoS2复合电极的声子态密度 (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K

    Fig. 7.  Phonon density of states for Au-MoS2 composite electrodes at different temperatures: (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K.

    图 8  不同温度时Au-ZnO复合电极的声子态密度 (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K

    Fig. 8.  Phonon density of states for Au-ZnO composite electrodes at different temperatures: (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K.

    图 9  不同温度下Cu-ZnO复合电极的界面热导

    Fig. 9.  Interfacial thermal conductivity of Cu-ZnO composite electrodes at different temperatures.

    图 10  不同温度下各组分的声子态密度 (a), (b) 300 K; (c), (d) 400 K; (e), (f) 500 K; (g), (h) 600 K

    Fig. 10.  Phonon density of states for each component at different temperatures: (a), (b) 300 K; (c), (d) 400 K; (e), (f) 500 K; (g), (h) 600 K.

    图 11  不同温度下, Cu-ZnO和Cu-TiO2界面的声子参与率 (a) 300 K; (b) 600 K

    Fig. 11.  Phonon participation at Cu-ZnO and Cu-TiO2 interfaces at different temperatures: (a) 300 K; (b) 600 K.

    表 1  ZnO的势函数参数[27]

    Table 1.  Potential function parameters of ZnO[27].

    Aij/(kcal·mol–1)Bij/(kcal·mol–1·Å6)ρij
    Zn—Zn1819.710.000.5177
    Zn—O59403960.000.1396
    O—O271720696.950.235
    下载: 导出CSV
    Baidu
  • [1]

    Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358Google Scholar

    [2]

    Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L 2021 Catal. Today 380 156Google Scholar

    [3]

    Ghosh U, Pal A, Pal T 2022 Adv. Mater. Interfaces 9 2200465Google Scholar

    [4]

    Lou Y B, Zhang Y K, Cheng L, Chen J X, Zhao Y X 2018 ChemSusChem 11 1505Google Scholar

    [5]

    Liu L D, Zhang H F, Xing S, Zhang Y, Li S G, Wei C, Peng F, Liu X Y 2023 Adv. Sci. 10 2207342Google Scholar

    [6]

    Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666Google Scholar

    [7]

    Zhao W R, Ai Z Y, Dai J S, Zhang M 2014 PLoS ONE 9 e103671Google Scholar

    [8]

    Zhai H S, Liu X L, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Wang P, Huang B B 2020 Chin. J. Catal. 41 1613Google Scholar

    [9]

    Li Y Y, Wu S, Zheng J W, Peng Y K, Prabhakaran D, Taylor R A, Tsang S C E 2020 Mater. Today 41 34Google Scholar

    [10]

    桑丽霞, 马梦楠 2023 高等学校化学学报 44 20220768Google Scholar

    Sang L X, Ma M N 2023 Chem. J. Chin. Uiv. 44 20220768Google Scholar

    [11]

    桑丽霞, 李志康 2024 73 103105Google Scholar

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105Google Scholar

    [12]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [13]

    Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energy 47 23570Google Scholar

    [14]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [15]

    Lu Z X, Wang Y, Ruan X L 2016 Phys. Rev. B 93 064302Google Scholar

    [16]

    Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768Google Scholar

    [17]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [18]

    Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105Google Scholar

    [19]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [20]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [21]

    Loh G C, Teo E H T, Tay B K 2012 Diamond Relat. Mater. 23 88Google Scholar

    [22]

    Robert S, Leonid Z, Pamela N 2007 Int. J. Heat Mass Transfer 50 3977Google Scholar

    [23]

    Samy M, Konstantinos T 2012 Phys. Rev. B 86 094303Google Scholar

    [24]

    Tang Z Y, Wang X X, He C Y, Li J, Chen M X, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320Google Scholar

    [25]

    Li Z D, Han L W, Ouyang T, Cao J X, Yao Y S, Wei X L 2025 Phys. Rev. Mater. 9 033804Google Scholar

    [26]

    Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640Google Scholar

    [27]

    Wang W D, Pi Z L, Lei F, Lu Y 2016 AIP Adv. 6 035111Google Scholar

    [28]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [29]

    Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472Google Scholar

    [30]

    Lin G, Jiang L, Ji P F 2023 Phys. Chem. Chem. Phys. 25 19853Google Scholar

    [31]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Res. 9 2372Google Scholar

    [32]

    Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113Google Scholar

    [33]

    Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796Google Scholar

    [34]

    Sheng Y F, Hu Y, Fan Z Y, Bao H 2022 Phys. Rev. B 105 075301Google Scholar

    [35]

    刘东静, 王韶铭, 杨平 2021 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [36]

    Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250Google Scholar

    [37]

    Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401Google Scholar

  • [1] 李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国. 氢键对聚丙烯复合材料分子结构与电荷输运特性的影响.  , 2025, 74(12): 127702. doi: 10.7498/aps.74.20250277
    [2] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟.  , 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [3] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [4] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟.  , 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究.  , 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究.  , 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [7] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究.  , 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [8] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟.  , 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [9] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [10] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究.  , 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [11] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移.  , 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [12] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析.  , 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [13] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究.  , 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [14] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [15] 何安民, 秦承森, 邵建立, 王裴. 金属Al表面熔化各向异性的分子动力学模拟.  , 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [16] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究.  , 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [17] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟.  , 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  421
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-27
  • 修回日期:  2025-07-12
  • 上网日期:  2025-08-12
  • 刊出日期:  2025-10-05

/

返回文章
返回
Baidu
map