搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转自旋-轨道角动量耦合玻色-爱因斯坦凝聚体的基态性质

赵磊 邱旭 梁毅 胡爱元 文林

引用本文:
Citation:

旋转自旋-轨道角动量耦合玻色-爱因斯坦凝聚体的基态性质

赵磊, 邱旭, 梁毅, 胡爱元, 文林

Ground state properties of rotating spin-orbital-angular-momentum coupled Bose-Einstein condensates

ZHAO Lei, QIU Xu, LIANG Yi, HU Aiyuan, WEN Lin
cstr: 32037.14.aps.74.20250542
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文以旋转自旋-轨道角动量耦合玻色-爱因斯坦凝聚体为对象, 通过数值求解单粒子定态Schrödinger方程和具有平均场相互作用的Gross-Pitaevskii方程, 研究了自旋-轨道角动量耦合与旋转对单粒子基态性质和平均场相互作用基态性质的影响, 发现旋转将导致角动量空间中单粒子能谱的二重简并消失, 单粒子能谱不再是关于零点角动量左右对称, 单粒子基态和平均场基态为占据单个角动量的涡旋态, 其角动量大小与旋转频率、激光强度和自旋-轨道角动量耦合有关. 当旋转频率小于临界值时, 基态涡旋的角动量大小不受旋转频率的影响. 当旋转频率超过临界值时, 基态涡旋的角动量大小将随着旋转频率的增加而增加.
    By numerically solving the single-particle stationary Schrödinger equation and the Gross-Pitaevskii equation with mean-field interactions at zero temperature, the ground state properties of the rotating spin-orbital-angular-momentum coupled Bose-Einstein condensates in a harmonic trapping potential are investigated in this work. The results show that the rotation lifts the double degeneracy of the single-particle energy spectrum in the angular momentum space, and leads to the vortex state. The angular momentum of the vortex depends on the rotating frequency, the intensity of the laser beam, and the spin-orbital-angular-momentum coupling. In particular, if the rotating frequency is below a critical value, the angular momentum of the ground state vortex remains unaffected by the rotating frequency. When the rotating frequency exceeds the critical value, the angular momentum of the ground state vortex will increase with the rotating frequency increasing. By assuming that the system is confined in a ring trap, the expression of the single-particle energy spectrum in the angular momentum space can be obtained, which clarifies how the rotation frequency affects the angular momentum of the ground state. In the presence of atomic interactions, similar phenomena can also be observed in the mean-field ground state at zero temperature.
      通信作者: 邱旭, xuqiu@cqnu.edu.cn ; 文林, wlqx@cqnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175027, 11875010)和重庆市自然科学基金(批准号: CSTB2025NSCQ-GPX1010, cstc2019jcyj-msxmX0217, cstc2021jcyjmsxmX0168)资助的课题.
      Corresponding author: QIU Xu, xuqiu@cqnu.edu.cn ; WEN Lin, wlqx@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175027, 11875010) and the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2025NSCQ-GPX1010, cstc2019jcyj-msxmX0217, cstc2021jcyjmsxmX0168).
    [1]

    Lin Y J, Jiménez-GarcÍa K, Spielman I B 2011 Nature 471 83Google Scholar

    [2]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [3]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [4]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [5]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [6]

    刘超飞, 万文娟, 张赣源 2013 62 200306Google Scholar

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306Google Scholar

    [7]

    李吉, 刘斌, 白晶, 王寰宇, 何天琛 2020 69 140301Google Scholar

    Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69 140301Google Scholar

    [8]

    Wang Y, Cui J, Zhang H, Zhao Y, Xu S, Zhou Q 2024 Chin. Phys. Lett. 41 090302Google Scholar

    [9]

    He J T, Fang P P, Lin J 2022 Chin. Phys. Lett. 39 020301Google Scholar

    [10]

    Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310Google Scholar

    [11]

    Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [12]

    Chen P K, Liu L R, Tsai M J, Chiu N C, Kawaguchi Y, Yip S K, Chang M S, Lin Y J 2018 Phys. Rev. Lett. 121 250401Google Scholar

    [13]

    Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X L, Peng S G, Zhan M, Pu H, Jiang K 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [14]

    Duan Y, Bidasyuk Y M, Surzhykov A 2021 Phys. Rev. A 102 063328

    [15]

    Chen K J, Wu F, Peng S G, Yi W, He L Y 2020 Phys. Rev. Lett. 125 260407Google Scholar

    [16]

    Wang L L, Ji A C, Sun Q, Li J 2021 Phys. Rev. Lett. 126 193401Google Scholar

    [17]

    Edmonds M 2021 Phys. Rev. A 104 043310Google Scholar

    [18]

    Bidasyuk Y M, Kovtunenko K S, Prikhodko O O 2022 Phys. Rev. A 105 023320Google Scholar

    [19]

    Cao R, Han J S, Wu J H, Yuan J M, He L Y, Li Y Q 2022 Phys. Rev. A 105 063308Google Scholar

    [20]

    Chen K J, Wu F, Hu J, He L 2020 Phys. Rev. A 102 013316Google Scholar

    [21]

    Chen X L, Peng S G, Zou P, Hu H 2020 Phys. Rev. Res. 2 033152Google Scholar

    [22]

    Sun K, Qu C L, Zhang C W 2015 Phys. Rev. A 91 063627Google Scholar

    [23]

    Chen L, Pu H, Zhang Y B 2016 Phys. Rev. A 93 013629

    [24]

    Alexander L F 2009 Rev. Mod. Phys. 81 647Google Scholar

    [25]

    Sunami S, Singh V P, Garrick D, Beregi A, Barker A J, Luksch K, Bentine E, Mathey L, Foot C J 2023 Science 382 443Google Scholar

    [26]

    Lee K, Kim S, Kim T, Shin Y 2024 Nat. Phys. 20 1570Google Scholar

    [27]

    Drori L, Das B C, Zohar T D, Winer G, Poem E, Poddubny A, Firstenberg O 2023 Science 381 193

    [28]

    Zhang Z, Li F, Malpuech G, Zhang Y, Bleu O, Koniakhin S, Li C, Zhang Y, Xiao M, Solnyshkov D D 2019 Phys. Rev. Lett. 122 233905Google Scholar

    [29]

    Shen J, Tang T, Wang L L 2011 Spectral Methods: Algorithms, Analysis and Applications (Berlin: Springer) pp238–253

    [30]

    Liu W, Cai Y 2021 SIAM J. Sci. Comput. 43 B219Google Scholar

    [31]

    Bao W, Cai Y 2018 Commun. Comput. Phys. 24 899Google Scholar

  • 图 1  $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=30 $ (a)和$ \varOmega_{\text{R}}/\hbar\omega_{\bot}=70 $ (b)时能量最低的两条能级随m的变化, 插图分别为基态的密度和相位分布. 其他参数取值为$ l=1 $, $ \omega_{\bot}=2\pi\times 10 $ Hz, $ \omega_{z}=2\pi\times 200 $ Hz, $ W=25 \text{ μm} $

    Fig. 1.  Variations of two single-particle lowest energy levels with m for $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=30 $ (a) and $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=70 $ (b), respectively. Other parameters are $ l=1 $, $ \omega_{\bot}=2\pi\times 10 $ Hz, $ \omega_{z}=2\pi\times 200 $ Hz, and $ W=25\text{ μm} $

    图 2  最低能级在不同$\varpi $取值下随m的变化和基态角动量$ m_{\mathrm{g}} $随$\varpi $的变化 (a), (b) $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=30 $; (c), (d) $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=70 $. 图(b)和(d)中的插图是$ \varpi=0.5 $和$ \varpi=0.7 $时基态密度和相位分布. (e) 以$\varpi $和$ \varOmega_\text{R}/\hbar\omega_{\bot} $为轴的二维参数空间中基态角动量的变化. 其他参数取值分别为$ l=1 $, $ \omega_{\bot}=2\pi\times 10 $ Hz, $ \omega_z=2\pi\times 200 $ Hz, $ W=25{\text{ μm}} $

    Fig. 2.  Variation of the single-particle lowest energy level with m for different $\varpi $ and the variation of the angular momentum $ m_{\mathrm{g}} $ of the single-particle ground state with $\varpi $: (a), (b) $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=30 $; (c), (d) $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=70 $. The insets in panels (b) and (d) are the density and phase of the single-particle ground state for $ \varpi=0.5 $ and $ \varpi=0.7 $, respectively. (e) Variation of the angular momentum of the single-particle ground state with $\varpi $ and $ \varOmega_{\text{R}}/\hbar\omega_{\bot} $. Other parameters are $ l=1 $, $ \omega_{\bot}=2\pi\times 10 $ Hz, $ \omega_z=2\pi\times 200 $ Hz, and $ W=25{\text{ μm}} $.

    图 3  (a) $ \varpi=0 $和$ l=2 $时, $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=100,\; 140,\; 160 $时的基态密度分布. (b), (c) $ l=1 $时, $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=30 $和70的基态角动量$ \langle \hat{L}_z \rangle $随旋转频率的变化, 插图为$ \varpi=0.5 $和$ \varpi=0.7 $时的基态密度和相位分布. 其他参数为$ a_{\uparrow\uparrow}= a_{\downarrow\downarrow}=100 a_{\text{B}} $, $ a_{\uparrow\downarrow}=50 a_{\text{B}} $, $ \omega_{\bot}=2\pi\times10 $ Hz, $ \omega_{z}=2\pi\times 200 $ Hz, $ N=1000 $和$ W=25{\text{ μm}} $, 其中$ a_{\text{B}} $为玻尔半径

    Fig. 3.  (a) Densities of the mean-field ground states for $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=100,\; 140,\; 160 $ when $ \varpi=0 $ and $ l=2 $. (b), (c) For $ l=1 $, the variation of the angular momentum $ \langle \hat{L}_z \rangle $ of the mean-field ground state with the rotating frequency $\varpi $ for $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=30 $ and $ \varOmega_{\text{R}}/\hbar\omega_{\bot}=70 $, respectively. The insets in panels (b) and (c) are the density and phase of the mean-field ground state for $ \varpi=0.5 $ and $ \varpi=0.7 $, respectively. Other parameters are $ a_{\uparrow\uparrow}=a_{\downarrow\downarrow}=100 a_{\text{B}} $, $ a_{\uparrow\downarrow}=50 a_{\text{B}} $, $ \omega_{\bot}=2\pi\times10 $ Hz, $ \omega_{z}=2\pi\times 200 $ Hz, $ N=1000 $, and $ W=25{\text{ μm}} $, where $ a_{\text{B}} $ is the Bohr radius.

    Baidu
  • [1]

    Lin Y J, Jiménez-GarcÍa K, Spielman I B 2011 Nature 471 83Google Scholar

    [2]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [3]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [4]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [5]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [6]

    刘超飞, 万文娟, 张赣源 2013 62 200306Google Scholar

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306Google Scholar

    [7]

    李吉, 刘斌, 白晶, 王寰宇, 何天琛 2020 69 140301Google Scholar

    Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69 140301Google Scholar

    [8]

    Wang Y, Cui J, Zhang H, Zhao Y, Xu S, Zhou Q 2024 Chin. Phys. Lett. 41 090302Google Scholar

    [9]

    He J T, Fang P P, Lin J 2022 Chin. Phys. Lett. 39 020301Google Scholar

    [10]

    Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310Google Scholar

    [11]

    Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [12]

    Chen P K, Liu L R, Tsai M J, Chiu N C, Kawaguchi Y, Yip S K, Chang M S, Lin Y J 2018 Phys. Rev. Lett. 121 250401Google Scholar

    [13]

    Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X L, Peng S G, Zhan M, Pu H, Jiang K 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [14]

    Duan Y, Bidasyuk Y M, Surzhykov A 2021 Phys. Rev. A 102 063328

    [15]

    Chen K J, Wu F, Peng S G, Yi W, He L Y 2020 Phys. Rev. Lett. 125 260407Google Scholar

    [16]

    Wang L L, Ji A C, Sun Q, Li J 2021 Phys. Rev. Lett. 126 193401Google Scholar

    [17]

    Edmonds M 2021 Phys. Rev. A 104 043310Google Scholar

    [18]

    Bidasyuk Y M, Kovtunenko K S, Prikhodko O O 2022 Phys. Rev. A 105 023320Google Scholar

    [19]

    Cao R, Han J S, Wu J H, Yuan J M, He L Y, Li Y Q 2022 Phys. Rev. A 105 063308Google Scholar

    [20]

    Chen K J, Wu F, Hu J, He L 2020 Phys. Rev. A 102 013316Google Scholar

    [21]

    Chen X L, Peng S G, Zou P, Hu H 2020 Phys. Rev. Res. 2 033152Google Scholar

    [22]

    Sun K, Qu C L, Zhang C W 2015 Phys. Rev. A 91 063627Google Scholar

    [23]

    Chen L, Pu H, Zhang Y B 2016 Phys. Rev. A 93 013629

    [24]

    Alexander L F 2009 Rev. Mod. Phys. 81 647Google Scholar

    [25]

    Sunami S, Singh V P, Garrick D, Beregi A, Barker A J, Luksch K, Bentine E, Mathey L, Foot C J 2023 Science 382 443Google Scholar

    [26]

    Lee K, Kim S, Kim T, Shin Y 2024 Nat. Phys. 20 1570Google Scholar

    [27]

    Drori L, Das B C, Zohar T D, Winer G, Poem E, Poddubny A, Firstenberg O 2023 Science 381 193

    [28]

    Zhang Z, Li F, Malpuech G, Zhang Y, Bleu O, Koniakhin S, Li C, Zhang Y, Xiao M, Solnyshkov D D 2019 Phys. Rev. Lett. 122 233905Google Scholar

    [29]

    Shen J, Tang T, Wang L L 2011 Spectral Methods: Algorithms, Analysis and Applications (Berlin: Springer) pp238–253

    [30]

    Liu W, Cai Y 2021 SIAM J. Sci. Comput. 43 B219Google Scholar

    [31]

    Bao W, Cai Y 2018 Commun. Comput. Phys. 24 899Google Scholar

  • [1] 杨国全, 靳晶晶. 旋转双势阱中势垒参数对玻色-爱因斯坦凝聚体隐藏涡旋的影响研究.  , 2025, 74(21): . doi: 10.7498/aps.74.20251001
    [2] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街.  , 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [3] 黄轶凡, 梁兆新. 激子极化激元凝聚体中的二维亮孤子.  , 2023, 72(10): 100505. doi: 10.7498/aps.72.20230425
    [4] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性.  , 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [5] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性.  , 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [6] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质.  , 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [7] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控.  , 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [8] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [9] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [10] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [11] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [12] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [13] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备.  , 2017, 66(8): 083701. doi: 10.7498/aps.66.083701
    [14] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [15] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性.  , 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [16] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究.  , 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [17] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为.  , 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [18] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控.  , 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [19] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用.  , 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [20] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波.  , 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
计量
  • 文章访问数:  470
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-24
  • 修回日期:  2025-08-01
  • 上网日期:  2025-08-12

/

返回文章
返回
Baidu
map